

NANT – Las Vegas 2015

Paul Haggarty

Why Electric Safety Standards

- To protect patients and caregivers from electrical shock
- To prevent electrical interference between instrument sub-systems/circuits
- To prevent electrical interference between different instruments and equipment
- To protect electrical equipment from people (ESD) Electrostatic Discharge

A Person at Risk

Electrical Shock Hazard

- Electricity passing through the body
- Body resistance is about 1,000 ohms
- Risk = Probability x Severity
- Harm
 - Startle reaction 0.5 mA, 50/60 Hz (hand)
 - Inability to let go 10 mA, 15-100 Hz (arm)
 - Ventricular fibrillation
 - 35 mA, 15-100 Hz (hand-foot)
 - 0.01 mA, 50/60 Hz (heart, direct)

A Patient at Risk

- The needles are inserted into an electrolyte (blood plasma).
- The electrolyte path is directly to the heart.
- An IV of normal saline connected to a needle inserted into the blood stream has a resistance of about 30 ohms.
- A 1.5 volt battery creates a current of 0.05 ampere at a resistance of 30 ohms.
- The patient can make direct contact with the dialysis equipment.

Safety Standards History

- First guideline in United States was created by Underwriter's Laboratories, May 1972 = UL – 544
- European Guidelines first edition was published in 1977 = IEC 601-1 entitled:
 - Safety of Medical Electrical Equipment
- IEC 606-1 second edition published in 1988.
 - Amendment 1 1991
 - Amendment 2 1995
- IEC 60601-1 third edition published in 2005
 - IEC 60601-1-2 fourth edition published in 2014

International Electrotechnical Commission (IEC)

- Medical Equipment
 - **IEC 60601 1**
- Electromagnetic Compatibility
 - IEC 60601 1 2
- Hemodialysis Equipment
 - IEC 60601 2 16
- Blood Pressure Equipment
 - IEC 60601 2 30
- Peritoneal Dialysis Equipment
 - IEC 60601 2 39

Scope of IEC 60601-1

- (1) General (Terminology, Definitions, Regulations)
- (2) Environmental Conditions
- (3) Protection Against Electrical Shock Hazards
- (4) Protection Against Mechanical Hazards
- (5) Protection Against Hazards From Unwanted Or Excessive Radiation
- (6) Protection Against Hazards Of Ignition Of Flammable Anesthetic Mixtures
- (7) Protection Against Excessive Temperatures And Other Safety Hazards
- (8) Accuracy Of Operating Data And Protection Against Hazardous Output
- (9) Abnormal Operation And Fault Conditions; Environmental Tests
- (10) Constructional Requirements

AAMI Standards

ANSI/AAMI ES60601 –1

- **ANSI = American National Standards Institute**
- Joint venture of ANSI, AMMI, and UL

Electric Safety Requirements

- Non-isolated Patient Connection.
 - Chassis risk current = 100 microamperes.
 - Patient risk current = 50 microamperes.
- Electrical Ground Required.
- Metal/Components Corrosion Resistant.
- Instrument Outlets Shielding from fluid spills
- Electric circuits separate from hydraulics.
- Supply mains electrical failure for system and components must create audible alarm.

Medical Electrical Equipment

Defined in IEC 60601 – 1 Section 2.2.15

- One connection to a Supply Mains
- Intended to diagnose, treat, or monitor the patient under medical supervision
 - **Patient Interface:**
 - Makes physical or electrical contact to patient
 - Transfers energy to or from the patient
 - Detects energy transfer to or from the patient

Class I Equipment

- Applies to Hemodialysis Equipment
- Protection from electrical shock does not rely on basic insulation only.
 - **Protection = Insulation + Ground**
- Means provided for connection to a protective earth conductor.
 - Uses fixed wiring through a/c power cord.
 - Accessible metal parts can't become "live" if basic insulation fails.
 - Power cord has 3 wires

Preventing Shock by Grounding

Type B Equipment

- Particular degree of protection against electric shock in regards to allowable leakage currents Type B
 - B = Earth ground
 - Hemodialysis equipment
- Blood pressure connections on hemodialysis equipment is Type BF
 - F = Floating
 - The pressure cuff is connected to the monitor by a piece of non-conductive tubing

Class II Equipment

- It's safer than class I
- It doesn't need a ground wire
- Protection = Insulation + Insulation
 - **Double Insulation**
 - Reinforced insulation
- The power cord has only 2 wires
- Examples: Blow dryer, Iron, Drill

Preventing Shock by Extra Insulation

Safety Tests

Earth leakage current.

- Current through the ground conductor
- Max = 0.5 mA for Normal Condition
- Max = 1.0 mA for Single Fault Condition
- Enclosed leakage current.
 - Current from an enclosure if touched
 - Max = 0.3 mA patient vicinity
 - Max = 0.5 mA non-patient area
- Applied part leakage.
 - Called patient lead leakage
 - Any flow from, between, or into an applied part.

End User Electrical Safety Testing

- Performed by a qualified individual.
- Completed every 12 months.
- Documented in equipment log.
- If leakage limits exceeded, then Equipment must be repaired.

End User Safety Check List

- Inspect for mechanical and function damage.
- Inspect safety labels for legibility.
- Inspect fuses for rated current and breaking characteristics.
- Verify proper function per manufacturer's instructions for use.
- Perform functional safety tests per manufacturer's PM program.

End User Safety Check List

- Test the earth ground resistance between the Mains ground pin and any accessible metal parts.
 - Resistance should be < 0.1 ohms.</p>
- Test earth leakage current.
 - Normal condition < 500 microampere</p>
 - Single fault condition < 1.0 milliampere</p>
- Enclosure leakage current.
 - Normal condition < 100 microampere</p>
 - Single fault condition < 500 microampere</p>

Electrostatic Discharge - ESD

- Medical Electrical Equipment ESD = IEC-801
- Damage can happen as fast as 1 nanosecond.
- Results can be immediate or dormant failure.
- Dormant failure is the worse.
 - Failure can occur months later.
 - Trace ability is almost impossible.
 - Major impact on warranties.

Developing Static Potentials

Electrostatic Generator	Voltage	
Taking off a sweater	30,000 V	
Combing your hair	10,000 V	
Walking on a carpet	3,000 V	
Putting on a coat	1,000 V	
Touching a doorknob	400 V	

Device Sensitivity to ESD

Types of Devices	ESD Potential	
VMOS	30 to 1,800 V	
EPROM	100 V	
MOSFET	100 to 200 V	
SAW	150 to 500 V	
CMOS	250 to 2000 V	
BIPOLAR	380 to 7000 V	
SCR	680 to 1000 V	

ESD Devices

Catalog #	<u>ltem</u>	<u>Price</u>
19844	Jewel Metal Expansion Wrist Strap with 6 ft. Cord	\$29.72
09100	Elastic Adjustable Wrist Strap with 6 ft. Cord	\$23.91
09480	Standard 6 ft. Extended Coil Cord	\$14.25
16475	18" x 22" Field Service Kit	\$76.73

DESCO (www.desco.com)

EMC – Electromagnetic Compatibility

- Must continue to provide "essential Performance"
- Addressed under IEC 60101-1-2 (2044)
- Signal limit = 3 V / meter
- Standard covers frequencies up to 1 GHz
- Standards information:

http://www.fcc.gov/oet/info/rules

Cell Phones vs. Dialysis Machines

- Testing has shown that interference can occur.
- Failure modes:
 - Blood pump speed slows/stops
 - Blood pressure monitors fluctuate
 - Air detector alarms
- All malfunctions are fail safe.
- No failures occur outside a 50 cm distance from the dialysis machine to the cell phone.