

0

NANT – New York John Sweeny Saturday – September 28th, 2013

Is this your understanding of a Dialysis Machine?

Electricity is intimidating because...

- Human aren't equipped to detect it ...until it's to late !
- You have five senses:
 - See (10,000 volts)
 - Hear (5,000 volts)
 - Taste (???)
 - Smell (ozone from movement in air)
 - Feel (a/c > 20 volts, static > 3,000 volts)
- Skin is your best protection if it's dry.
- Electricity tends to flow on the outside of the body. The heart is mid-torso.

Basic Electron Characteristics

- The electron was "discovered" in 1897 by Sir J. J.Thompson (Noble prize in Physics – 1906)
- Electrons create an electrical field which can apply force on other charged particles in their vicinity.
 - Like charges repel
 - Opposite charges attract
- The measure of this force was done by Charles Coulomb in 1784. ($F = k \frac{qq''}{r^2}$)
- Electrons in motion create magnetic fields

Electrical Terminology

- <u>Coulomb (Q)</u> mks system's unit of charge. I coulomb of charge passing a point in a wire in I second equals one ampere. I coulomb = 6.24 x 10¹⁸ electrons
 - Charles Augustin Coulomb (1736 1806)
- <u>Volt (V)</u> measure of potential energy in an electric field. I volt = one joule of energy per one coulomb of charge. (I watt = I joule/second)
 - Alessandro Volta (1745 1827)
 - Created the first chemical battery

Electrical Terminology

- <u>Ampere</u> (I) The unit of current = a "flow rate" of one coulomb per second in a wire
 - Andre Marie Ampere (1775 1836)
 - Established the relationship between electricity and magnetism.
- <u>Ohm</u> (R or Ω) the unit of resistance = I ohm is the ratio of one volt/one ampere. The reciprocal of resistance is conductance.
 - Georg Simon Ohm (1789 1854)
 - Discovered the direct proportionality of current in a conductor to the voltage applied (V = IR, R = V/I, I = V/R)

Electrical Terminology

- <u>Watt</u> Unit of power in the mks system. The rate of using energy. I watt equals I joule of energy per second. I watt = I volt x I ampere.
- $P = VI = I^2R = V^2/R$
 - James Watt (1736 1819)
 - Inventor of the first highly efficient steam engine
 - Developed the concept of horsepower
 - About your electric bill:
 - You purchase electricity (actually energy) in kilowatt-hours (kwh)
 - I kwh = 1000 watt-hours = 3,600,000 watt-seconds = 3.6 x 10⁶ joules
 - I kwh = energy to run a 100 watt light bulb for 10 hours

Conductivity

- A measure of the ratio of an electrical current density to an electric field in a material.
- The measure of a solutions ability to pass an electrical current.
- Measured using a conductivity cell.
- Unit of measure:
 - For dialysate: milliSiemens/cm = mS/cm
 - For water: microSiemens/cm = μ S/cm
- The conductivity in a material will vary with temperature. For every cell, there will be a thermistor.

Electricity vs.Water

ELECTRICAL CONCEPT	WATER CONCEPT	
Voltage (volts)	Pressure (P.S.I.)	
Current (ampere)	Flow Rate (mL/min)	
Resistance (ohms)	Restriction (Δ P.S.I.)	
Wire (A.W.G.*)	Pipe (diameter)	
Capacitor (µfarad)	Tank (gallons)	
Power Source (outlet)	Water source (water main)	
Leakage current (µamp)	Water leak (mL)	
Relay, Transistor	Ball valve, Faucet	
Diode	Check valve	

* = American Wire Gauge (works like needles – the higher the number the smaller the wire)

Fluke 87 Multimeter

Yellow Button – selects capacitance in ohms position, temperature in mV position and ac or dc current in ampere positions. <u>Min Max</u> – Records MAX, MIN, AVG, and present reading over time for any switch position Range – Switches between available ranges for selected function and between °F and °C <u>AutoHOLD</u> – captures reading on display and beeps <u>Beeper</u> – Turns the beeper on/off for continuity checks Rel Δ - creates reference value and compares all future readings to the reference value <u>Hz %</u> - Switches to frequency measurements

Applying the concepts

- What is the expected resistance of a 1000 watt heater rod rated for 120 volts?
 - $P = V^2/R$ therefore $R = V^2/P$
 - R = (120)²/1000 = 14400/1000 = 14.4 ohms
- Under the same voltage requirement will a 2000 watt heater rod have a higher or lower resistance than the 1000 watt rod?

Fundamental Trouble Shooting

- There are only two reasons an electrical component will not work.
 - It has no power
 - The component is broken
- Checking for power
 - Is the Power source functioning?
 - Is the device plugged in?
 - Is it fused properly? Fuses don't just fail!
 - Does it run off a power supply? What voltage?
 - Is that voltage being applied to the component?

Power Distribution

Trouble shooting an electrical component

- First, you must know how the component operates.
- Components like thermistors, solenoids, and photoresistors can be tested for resistance.
- Solid state circuits cannot be tested using a multimeter. Exchanging circuits may be the only way to verify failure, but check the power first!
- Wires should always have low resistance.
- Diodes conduct in one direction, but not the other.
- Conductivity cells can't be tested for resistance.

Skin Resistance

- Your skin is your protection... until you add water!
 - Dry calloused hands = I 2 Megohms
 - Dry "normal" hands = 300K ohms
 - Sweaty hands (small surface area) = 30K ohms
 - Sweaty hands (large surface area) = 3K ohms
- Electrocution
 - 0.006 0.2 ampere through the heart for I 3 seconds will cause heart muscle fibrillation
 - Bathtub resistance is about 1000 ohms
 - I20V / 1000 ohms = 0.12 ampere

A Person at Risk

• Electrical Shock Hazard

- Electricity passing through the body
- Body resistance is about 3,000 ohms
- Risk = Probability x Severity
- Harm
 - Startle reaction 0.5 mA, 50/60 Hz (hand)
 - Inability to let go 10 mA, 15-100 Hz (arm)
 - Ventricular fibrillation
 - 35 mA, 15-100 Hz (hand-foot)
 - 0.01 mA, 50/60 Hz (heart, direct)
 - Cell damage
 - Burn (high frequency)

A Patient at Risk

- Skin protection is voided by metal fistula needles.
- The needles are inserted into an electrolyte (blood plasma).
- The electrolyte path is directly to the heart.
- An IV of normal saline connected to a needle inserted into the blood stream has a resistance of about 30 ohms.
- A 1.5 volt battery creates a current of 50 µamp at a resistance of 30K ohms.
- The patient can make direct contact with the dialysis equipment.

Medical Electrical Equipment

- Defined in IEC 60601 1 Section 2.2.15
 - One connection to a Supply Mains
 - Intended to diagnose, treat, or monitor the patient under medical supervision
 - Patient Interface:
 - Makes physical or electrical contact to patient
 - Transfers energy to or from the patient
 - Detects energy transfer to or from the patient

Class I Equipment

- Applies to Hemodialysis Equipment
- Protection from electrical shock does not rely on basic insulation only.
- Means provided for connection to a protective earth conductor.
 - -Uses fixed wiring through an a/c power cord.
 - Accessible metal parts can't become "live" if basic insulation fails.

Class I Equipment Types

- Type CF
 - applied parts in direct contact with the heart
 - doesn't apply to hemodialysis equipment
- Type BF (Blood Pump)
 - less stringent than CF
 - have conductive patient contact (not the heart)
 - have medium to long contact times
 - no earth ground connection
- Type B (Hemodialysis Machine)
 - least stringent
 - applied parts not conductive
 - Can be immediately released from patient
 - May connect to earth ground

Everything Must Go to an Electrical Ground!

Preventing Shock by Grounding

AAMI Standards

- ANSI/AAMI/ISO 60601-2-16 Standards (2008)
- Medical Electrical Equipment
- Electric Safety Requirements
 - Non-isolated Patient Connection.
 - Chassis risk current = 100 microamperes.
 - Patient risk current = 50 microamperes.
 - Electrical Ground Required.
 - Metal/Components Corrosion Resistant.
 - Instrument Outlets Shielding from fluid spills
 - Electric circuits separate from hydraulics.
 - Supply mains electrical failure for system and components must create audible alarm.

Electrostatic Voltage

MEANS OF STATIC GENERATION	10 TO 20% RELATIVE HUMIDITY	65 TO 90% RELATIVE HUMIDITY
WALKING ACROSS A CARPET	35,000	1,500
WALKING OVER A VINYL FLOOR	12,000	250
COMMON PLASTIC BAG PICKED UP FROM A BENCH	20,000	1,200
WORK CHAIR PADDED WITH POLYURETHANE FOAM	18,000	1,500
WORKER AT BENCH	6,000	100

Semiconductor Sensitivities

Device Type	Threshold Susceptibility (volts)
MOSFET	10-100
EPROM	100+
CMOS	200-3,000
ОрАМР	190-2,500
Schottky Diode	300-2,500
Film Resistor	300-3,000
SCR or TRIAC	500-1000

DAMAGES CAUSED BY ESD

5000X

ESD Devices

• DESCO (<u>www.desco.com</u>)

Catalog #	<u>Item</u>	<u>Price</u>
19844	Jewel Metal Expansion Wrist Strap with 6 ft. Cord	\$28.14
09100	Elastic Adjustable Wrist Strap with 6 ft. Cord	\$22.64
09480	Standard 6 ft. Extended Coil Cord	\$12.85
16475	18" x 22" Field Service Kit *	\$71.26

* Includes Work Surface, Ground Cord, and Wrist Strap

SAL-RING OSTICAT

association star

ANSI/ESD S20.20-1999

ESD Standard

for the Development of an Electrostatic Discharge Control Program for –

Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices) The Industry Standard for ESD is ANSI/ESD S20.20

Electrostatic Discharge Association 7900 Turin Road, Bldg 3, Ste 2 Rome, NY 13440-2069

An American National Standard Approved August 4, 1999

Quiz Time!!

• If this is the symbol for an ohm:

• What is this the symbol for?

