The Equations of Dialysis

NANT – New York - 2012 John A. Sweeny jsweeny@tampabay.rr.com

An Equation is...

- Math:
 - "A statement that each of two statements is equal to each other."

 $Y^2 = 3x^3 + 2x + 7$

- Chemistry:
 - "A symbolic expression that represents a chemical change as observed in a laboratory".

 $2H_2O = H_3O^+ + OH^-$

- Medical:
 - " An expression made up of two members connected by the sign of equality".

Clearance x Time = Volume (Kt/V = 1)

Equation Types

- Hypothesis
 - Relationships implied without supporting evidence
- Empirical
 - Based solely on experiment and observation
 - No reference to scientific principals
- Theoretical
 - A formulation of apparent relationships
 - Deals with science concepts and knowledge
 - Implies considerable evidence of support
 - Pure science as opposed to applied science

Equation Relationships

• The Equation:

$$W_{\rm F} = \frac{C - 2200}{E} \ x \ W_I$$

W_F = Final Weight

C = Calorie intake/day

2200 = Calories to maintain weight

- The Relationships:
 - Final Weight is directly proportional to Calorie intake/day

K/DOQI Guidelines for Classification

Stage	Description	GFR (mL/min)	Action
1	Damage with normal or high GFR	>90	CVD risk reduction; diagnose and treat; slow progression
2	Mild decrease in GFR	60-89	Monitor progression; nutritional assessment and intervention
3	Moderate decrease in GFR	30-59	Evaluate and treat complications
4	Severe decrease in GFR	15-29	Prepare for replacement therapy
5	Kidney Failure	<15	Replacement therapy if uremia is present

Is there a way to determine which classification a patient falls into and what information do we need to know to figure this out?

MDRD Study Equation for calculating GFR

GFR (mL/min per 1.73 m² body surface area) =

186 x (S_{Cr})^{-1.154} x (Age)^{-0.203} x (0.742 if female) x (1.210 if African-American)

S_{cr} = serum creatinine measured in mg/dL

- Not validated in:
 - Diabetic kidney disease
 - Patients with serious comorbid conditions
 - Normal persons
 - Persons older than 70.

MDRD = Modification of Diet in Renal Disease

GFR from MDRD Study Equation

Results for a male (1.73 m ²)									
S _{Cr}	GFR		Age	GFR					
(Age = 60)			(SCR = 2)						
1	81.0		40	39.5					
2	2 36.4 50 37.8								
3	22.8		60	36.4					
4	16.4		70	36.3					
Female = 26	Female = 26% lower								
African America Male = 21% higher									
African Ame	erican F	ema	le = 10% lo	wer					

If we are going to treat the patient, we need a way to measure our success. Urea is the major marker used.

Is there a way to know how much urea a patient will generate based on their diet intake of protein?

The Conversion Equation Protein to Urea Nitrogen

```
DPI = PCR = 9.35 G + 11.04
or
G = (PCR - 11.04) / 9.35
```

DPI = Dietary Protein Intake (grams/day) PCR = Protein Catabolic Rate (grams/day) G = Generation Rate (milligrams of urea nitrogen/minute)

BUN Increase in a ESRD Patient

- Patient's Weight = 70.0 kilograms
- Patient's Fluid Volume = 58% of Weight
- 70 x 0.58 = 40.6 liters = 406 deciliters

Let DPI = PCR = 84 g/day (1.2 g/kg/day), then:

G = (84 - 11.04) / 9.35 = 7.80 mg/min. 7.80 mg/min x 60 min/hr = 468 mg/hr. 468 mg/hr x 24 hr/day = 11,232 mg/day 11,232 mg/day / 406 dL = 27.7 mg/dL/day.

Patient's PCR vs. Pre Treatment BUN

Since the patient will need to have his/her urea removed, and there are so many different dialyzers, is there a simple way to measure urea removal performance for a given dialyzer?

Dialyzer BUN Clearance

THE EMPIRICAL FORMULA FOR BLOOD CLEARANCE IS:

$$C_{BUN} = \left(\frac{A_{BUN} - V_{BUN}}{A_{BUN}}\right)Q_{B}$$

WHERE:

C_{BUN} = CLEARANCE OF SOLUTE X. (mL/min) A_{BUN} = ARTERIAL CONCENTRATION OF X. (mg/dL) V_{BUN} = VENOUS CONCENTRATION OF X. (mg/dL) Q_B = BLOOD FLOWRATE (mL/min)

BUN of Venous Blood based on Dialyzer KoA

	<u>QB = 300 mL/min</u>		<u>QD = 60</u>	00 mL/min		
<u>KoA</u>	<u>Clearance</u>	Arte	rial Blood B	BUN Values	<u>; (mg/dL)</u>	
(mL/min <mark>)</mark>	(mL/min)	70	80	90	100	110
300	169	30.6	34.9	39.3	43.7	48.0
400	196	24.3	27.7	31.2	34.7	38.1
500	217	19.4	22.1	24.9	27.7	30.4
600	232	15.9	18.1	20.4	22.7	24.9
700	245	12.8	14.7	16.5	18.3	20.2
800	254	10.7	12.3	13.8	15.3	16.9
900	262	8.9	10.1	11.4	12.7	13.9
1000	269	7.2	8.3	9.3	10.3	11.4

It's not very practical to measure blood urea concentrations to determine clearance.

Is there an equation that can calculate the expected clearance based on a known blood flowrate, dialysate flowrate and dialyzer used?

Determining the K_oA for a Dialyzer

$$KoA = \left[Q_B \middle/ 1 - \frac{Q_B}{Q_D} \right] \ln \left[\frac{1 - \frac{C_X}{Q_D}}{1 - \frac{C_X}{Q_B}} \right]$$

Where:

 C_x = Clearance of solute, X Q_B = Blood flowrate Q_D = Dialysate flowrate In = Natural logarithm = e = 2.718281828.....

		KoA	Calcul	ation			
Entor know	vn volues fo	r Cloarance	Blood Fl	owrate and	Dialveato	Flowrato	
Note: The	formula will	not work if	the Blood :	and Dialysa	te Flowrate	s are equal	
For this co	ndition. sub	ostitute a B	lood or Dia	lvsate Flow	rate which	is changed	bv onlv
one mL. T	he error wil	I be less th	an one in tl	ne clearanc	e value.	ge en la la ge el	
				Blood		Dialysate	
<u>Dialyzer</u>	-	<u>Clearance</u>		Flowrate	-	Flowrate	
IP4U		225		300		600	
				Γ	. –]		
		-		$- 1 - \frac{c}{c}$			
	rmula =	$K_0 \Lambda - C$	$\frac{Q_B}{1-Q_B}$	$ _{1n} = Q$			
NOATO	mula –		$\mathcal{Z}_{B}/\mathcal{I}^{-}Q_{D}$	$\begin{bmatrix} m \\ 1 \end{bmatrix}_{1} C$	X		
		L	, - D	$ 1 - \overline{0} $	$\overline{\mathbf{p}}_{p}$		
				L ~			
KoA =	550	mL/min.					

Calculating BUN Clearance using KoA

$$C_{BUN} = \frac{Q_B \left(e^{KoA} \left(\frac{1}{Q_B} - \frac{1}{Q_D} \right) - 1 \right)}{e^{KoA} \left(\frac{1}{Q_B} - \frac{1}{Q_D} \right) - \frac{Q_B}{Q_D}}$$

 $C_x = Clearance of x.$ $Q_B = Blood Flowrate$ $Q_D = Dialysate Flowrate$ KoA = Clearance Coefficiente = 2.718281828....

<u>Clearance for a Dialyzer with a KoA = 600 mL/min</u>

BLOOD FLOW			DIALYSATE FLOW			
ml/min			ml/min			
	<u>400</u>	<u>500</u>	<u>600</u>	<u>700</u>	<u>800</u>	
<u>200</u>	175	179	181	183	184	
<u>300</u>	217	226	232	237	240	
400	240	255	264	271	276	
500	255	273	285	294	301	

Once the fluid volume of the patient is known and the dialyzer clearance calculated, is there an equation to determine the time of dialysis?

Length of Treatment

Kt/V = 1.3

K = Dialyzer Clearance (mL/min)
t = Time of Treatment (min)
V = Patient's volume (mL)

 $t = (1.3 \times V)/K$

			Calculating <u>Kt/V</u>				
<u>Dialyzer</u> Clearance (K)			<u>Treatment</u> <u>Time (t)</u>			<u>Patient</u> Weight	
(mL/min)			(minutes)			(kilograms)	
250			240			70	
	<u>Patient</u> Volume (V)				<u>Kt/V</u>		
	(milliliters)						
	40600				1.48		
			Time vs. Kt/V				
		<u>Kt/V</u>		<u>Tx Time</u>			
				(minutes)			
		0.90		146			
		1.00		162			
		1.10		179			
		1.30		211			
		1.40		227			
		1.50		244			
		1.60		260			

Once the clearance of the dialyzer and time of treatment are known, is there a way to estimate how the urea is reduced in the patient while she/he is being dialyzed?

Urea Reduction Equation

$$C = C_0 e^{-Kt/V} + G/K (1 - e^{-Kt/V})$$

- C = Plasma BUN Concentration (mg/mL)*
- C₀ = Predialysis BUN Concentration (mg/mL)*
- K = Dialyzer Clearance (mL/min)
- t = time (minutes)
- V = Patient Volume (mL)
- **G** = Generation of urea (mg/min)

* mg/mL equals mg/dL divided by 100.

$C = C_0 e^{-Kt/V} + G/K (1 - e^{-Kt/V})$

	C = Plasm	na BUN Co	ncentratio	n (mg/mL)	*						
	C ₀ = Predialysis BUN Concentration (mg/mL)*										
	K = Dialyzer Clearance (mL/min)										
	t = time (r	ninutes)									
	V = Patier	nt Volume	(mL)								
	G = Gene	ration of u	rea (mg/m	in)							
	* mg/mL e	equals mg/	dL divide	d by 100.							
C ₀ =	80	mg/dL	K =	225	mL/min						
G =	8.5	mg/min	V =	40600	mL						
		-									
t =	240	minutes	C =	23.9	mg/dL						

$\underline{\mathbf{C} = \mathbf{C}_{0}}(\mathbf{e}^{-\mathbf{Kt/V}}) + \mathbf{G/K(1 - e^{-\mathbf{Kt/V}})}$

Time	С	C ₀ (e ^{-Kt/V})	G/K(1 – e ^{-Kt/V})
(minutes)	(mg/dL)	(mg/dL)	(mg/dL)
0	80.0	80.0	0.0
60	58.5	57.4	1.1
120	42.9	41.1	1.8
180	31.9	29.5	2.4
240	24.0	21.2	2.8

The higher the reduction in urea, the better the treatment, but we can't run the patient all day. Is there a urea reduction value that defines an adequate treatment?

URR % = ($C_{PRE} - C_{POST}$) / $C_{PRE} = 1 - (C_{POST}/C_{PRE})$

<u>C_{PRE}</u> TREATMENT (mg/dL)						<u>C</u> P TREAT (mg	<u>OST</u> F <u>MENT</u> I/dL)						
	50	48	45	42	40	38	35	32	30	28	25	22	
140	64%	66%	68%	70%	71%	73%	75%	77%	79%	80%	82%	84%	
135	63%	64%	67%	69%	70%	72%	74%	76%	78%	79%	81%	84%	
130	62%	63%	65%	68%	69%	71%	73%	75%	77%	78%	81%	83%	
125	60%	62%	64%	66%	68%	70%	72%	74%	76%	78%	80%	82%	
120	58%	60%	63%	65%	67%	68%	71%	73%	75%	77%	79%	82%	
115	57%	58%	61%	63%	65%	67%	70%	72%	74%	76%	78%	81%	
110	55%	56%	59%	62%	64%	65%	68%	71%	73%	75%	77%	80%	
105	52%	54%	57%	60%	62%	64%	67%	70%	71%	73%	76%	79%	
100	50%	52%	55%	58%	60%	62%	65%	68%	70%	72%	75%	78%	
95	47%	49%	53%	56%	58%	60%	63%	66%	68%	71%	74%	77%	
90	44%	47%	50%	53%	56%	58%	61%	64%	67%	69%	72%	76%	
85	41%	44%	47%	51%	53%	55%	59%	62%	65%	67%	71%	74%	
80	38%	40%	44%	48%	50%	53%	56%	60%	63%	65%	69%	73%	
75	33%	36%	40%	44%	47%	49%	53%	57%	60%	63%	67%	71%	
70	29%	31%	36%	40%	43%	46%	50%	54%	57%	60%	64%	69%	
65	23%	26%	31%	35%	38%	42%	46%	51%	54%	57%	62%	66%	
60	17%	20%	25%	30%	33%	37%	42%	47%	50%	53%	58%	63%	
55	9%	13%	18%	24%	27%	31%	36%	42%	45%	49%	55%	60%	

If the urea concentration at the beginning and end of the treatment are known, is there a relationship between Kt/V and these values?

Urea Reduction Ratio vs. Kt/V

URR = (1 - R) $R = C_{post}/C_{pre}$

C_{pre} = Pre Treatment Plasma urea level C_{post} = Post Treatment Plasma urea level

 $Kt/V = -In(R - 0.03) + (4 - 3.5R) \times UF/W$

UF = Fluid removed (liters) W = Postdialysis weight (kilograms)

<u>Treatment Kt/V</u> W = 70 kg, R =0.30, URR = 70%

UF (Liters)	Equation 1	Equation 2	Equation 3
0	1.31	1.31	1.31
1	1.35	1.35	1.36
2	1.39	1.39	1.40
3	1.44	1.44	1.45
4	1.48	1.48	1.50
10	1.73	1.81	1.78

Equation $1 = -\ln(R - 0.03) + (4 - 3.5R) \times UF/W$

Equation $2 = -\ln(R - 0.03 - (0.75 \times UF/W))$

Equation $3 = 2.2 - 3.3 \times (R - 0.03 - UF/W)$

Achieving Quality Therapy

Handy Technical Facts

- Q_B actual = 9% less than equipment display at negative 200 mmHg pre-pump pressure.
- For water: Parts per million (ppm) x 1.5 = Conductivity (μS/cm)
- Dialysate conductivity (mS/cm) =

Blood pH = 6.1 + log ([HCO₃-] / 0.03 x Pco₂ mmHg)

Normal $[HCO_3^{-}] = 24 \text{ mEq/L}$ Normal PCO2 = 40 mmHg

- Hardness (mg CaCO₃/L) = $2.497 \times Ca^{++}$ (mg/L) + $4.118 \times Mg^{++}$ (mg/L)
- 1 atmosphere = 760 mmHg = 14.7 PSI = 101.325 kilopascals
- 1 mOsm = 19.3 mmHg @ 37^o C

References

- <u>Handbook of Dialysis</u> John T. Daugirdas, Todd S. Ing, Peter G. Blake, 4th Edition, © 2007, Lippincott, Williams and Wilkens., ISBN 13: 978-0-7817-5253-4
- <u>NKF Practice Guidelines for Chronic Kidney Disease: Evaluation,</u> <u>Classification, and Stratification</u> – Andrew S. Levey, MD, et al, Annals of Internal Medicine, Volume 139, No. 2, July 2003
- <u>Water Treatment for Dialysis</u> Douglas A. Luehmann, et al, NANT Publication, July 1989
- <u>Review of Hemodialysis for Nurses and Dialysis Personnel</u> Judith Z. Kallenbach, 8th Edition, 2012, Mosby Inc., ISBN 978-0-323-07702-6