

From Food to Floor Drain

John A. Sweeny Old Dialysis Technical Guy

1

WHAT IS UREA?

• A compound formed in the liver by the process known as the urea cycle. Gram Molecular Weight = 60 Daltons

Carbon - Oxygen - Nitrogen - Hydrogen - O

- Principal end product of protein catabolism.
- Constitutes about half of the total urinary solids.
- Elevated level in blood = Azotemia
- BUN = Blood Urea Nitrogen = Amount of nitrogen in blood. Ratio: Nitrogen / Urea = 28/60 = 0.467.

Protein Basics

• Proteins are large molecules made primarily from hundreds to thousands of α -amino acids.

AMINO R ACID
(
$$NH_3^+$$
) - CH - (COO⁺)

- There are 20 amino acids used to build human proteins.
 - 9 are essential (You must eat them.)
 - 11 are nonessential (You can make them.)

Protein Possibilities

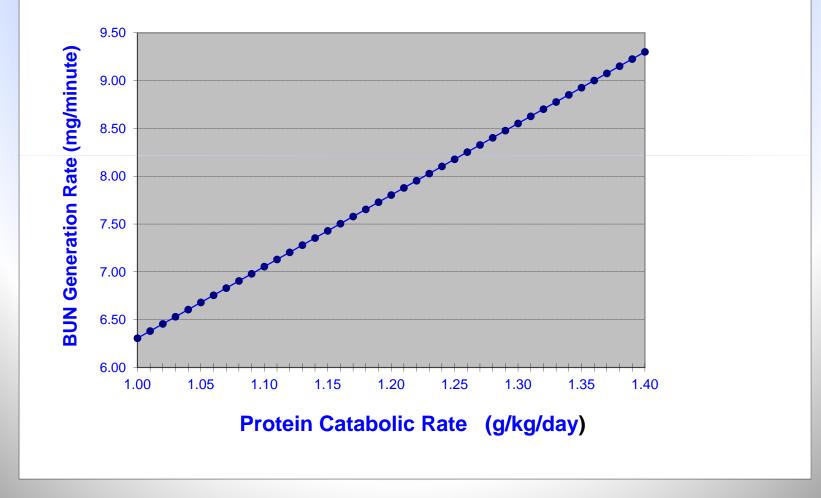
For a protein 100 amino acids long, there are 20¹⁰⁰ possible combinations.

Dietary Protein Intake - DPI

- Normal DPI should be in the range of 1.0 1.4 grams/kilogram of body weight/day.
- Effects of malnutrition begin to appear when the DPI is reduced to the 0.3 0.5 gm/kg/day range.
- The type of protein consumed is important.
 - High-Biologic-Value Protein (Lean Meat, fish, and eggs)
 - Low-Biologic-Value Protein (Breads and Cereals)
 - HBV proteins contain the essential amino acids.
 - Without HBV protein, muscle tissue is broken down for its amino acids.

Protein Content in Food

1 oz. Beef, Pork, Chicken = 8 grams 1 oz. Clams, Shrimp, Cod = 6 grams 1 oz. Cheese, Peanut Butter = 8 grams 1 cup cereal = 2 grams 1 Baked Potato = 5 grams 1/3 cup Spinach, Corn, Squash = 2 grams 1/2 cup Kidney Beans, Tomato = 2 grams 1/2 cup of fruit < 1 gram

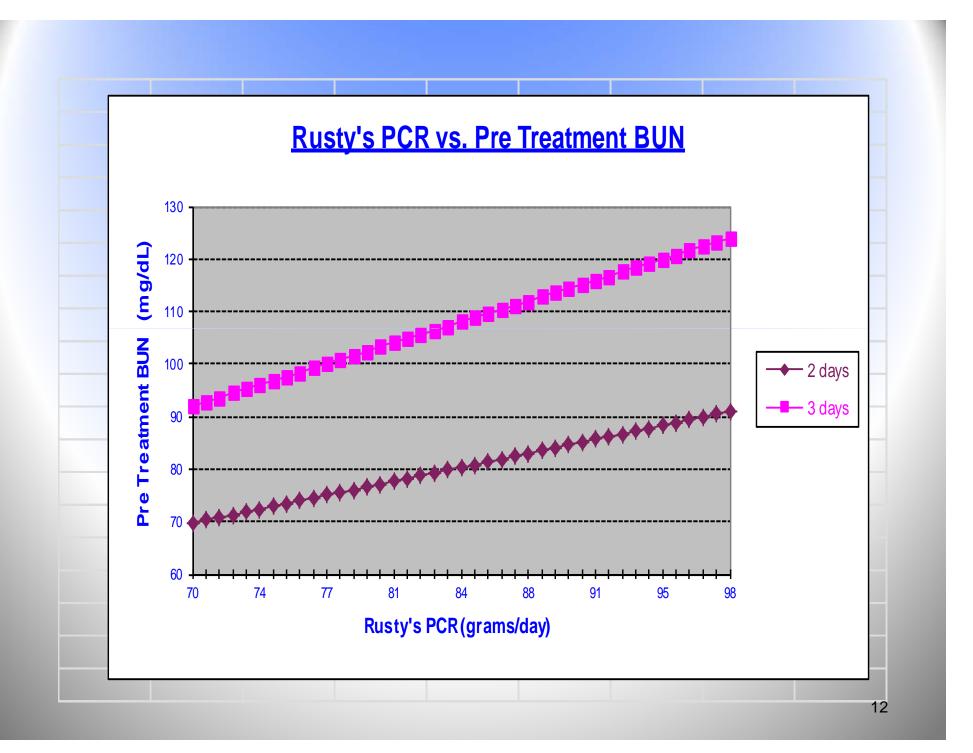

Converting Protein to Urea

- In general, DPI will equal Protein Catabolic Rate (PCR) in the stable patient.
- The equation which relates protein intake to urea nitrogen generation rate (G) has been determined by monitoring diet and urea nitrogen in urine.

The Conversion Equation Protein to Urea Nitrogen

PCR (grams/day) G (milligrams of urea nitrogen/minute)

BUN Generation Rate vs. Protein Catabolic Rate



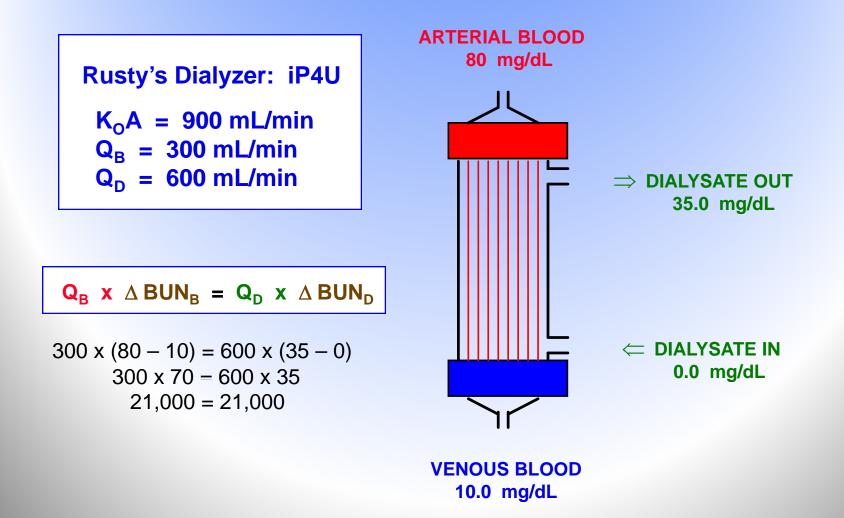
Introducing the Patient

- Name: Rusty Pipes
- Occupation: Plumbing Specialist
- Weight: 70.0 kilograms (154.3 pounds)
- Fluid Volume: 40.6 liters (58% of his weight)
- Residual Renal Function: None
- DPI: Varies between 1.0 1.4 g/kg/day
- Nephrologist: Dr. I. M. Nephron

BUN Build-up in Rusty

- Rusty's Volume = 40.6 liters = 406 deciliters
- If DPI = PCR = 84 g/day (1.2 g/kg/day x 70 kg), then:
- G = (84 11.04) / 9.35 = 7.80 mg/min.
- 7.80 mg/min x 60 min/hr = 468 mg/hr.
- 468 mg/hr x 24 hr/day = 11,232 mg/day
- 11,232 mg/day / 406 dL = 27.7 mg/dL/day.

Dialyzer BUN Clearance


THE EMPIRICAL FORMULA FOR BLOOD CLEARANCE IS:

$$C_{X} = \left(\frac{A_{X} - V_{X}}{A_{X}}\right) Q_{B}$$

WHERE:

 $C_X = CLEARANCE OF SOLUTE X. (mL/min)$ $A_X = ARTERIAL CONCENTRATION OF X. (mg/dL)$ $V_X = VENOUS CONCENTRATION OF X. (mg/dL)$ $Q_B = BLOOD FLOWRATE (mL/min)$

Urea Clearance in Blood and Dialysate

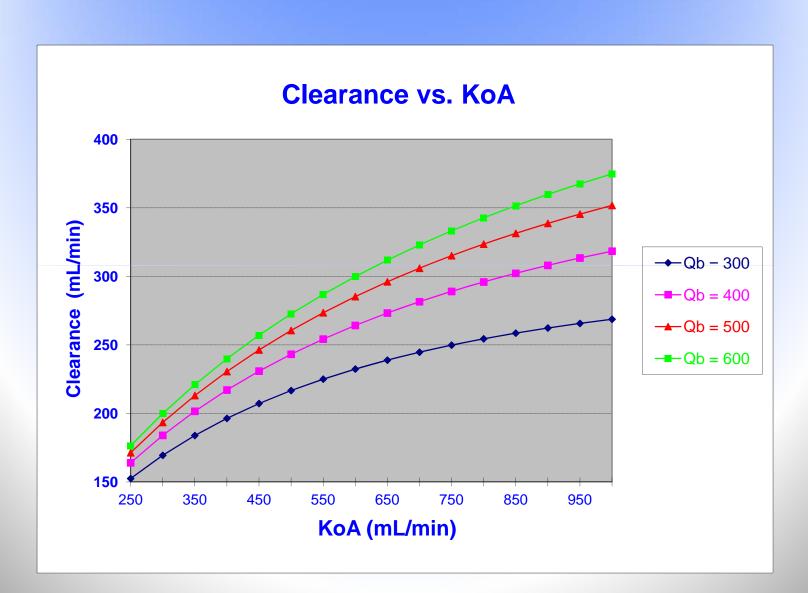
Rusty's iP4U Clearance

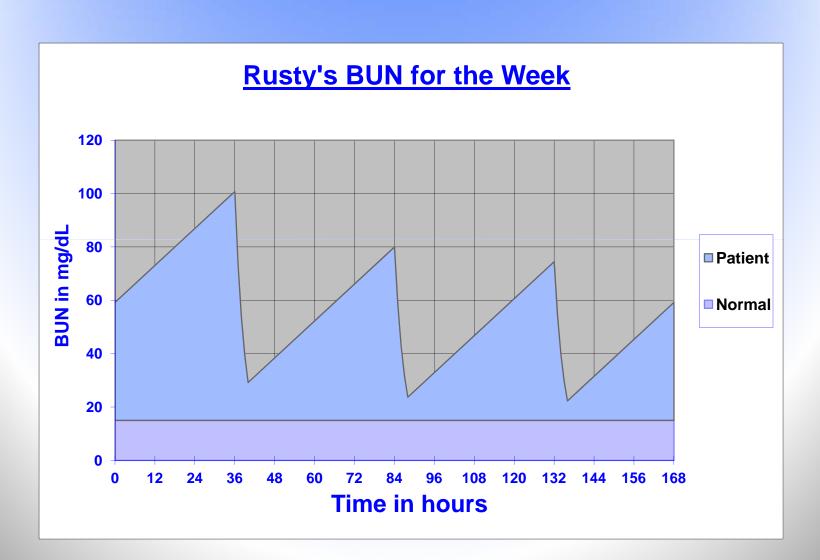
 $A_{BUN} = 80 \text{ mg/dL}$ $V_{BUN} = 10 \text{ mg/dL}$ $Q_B = 300 \text{ mL/min}$

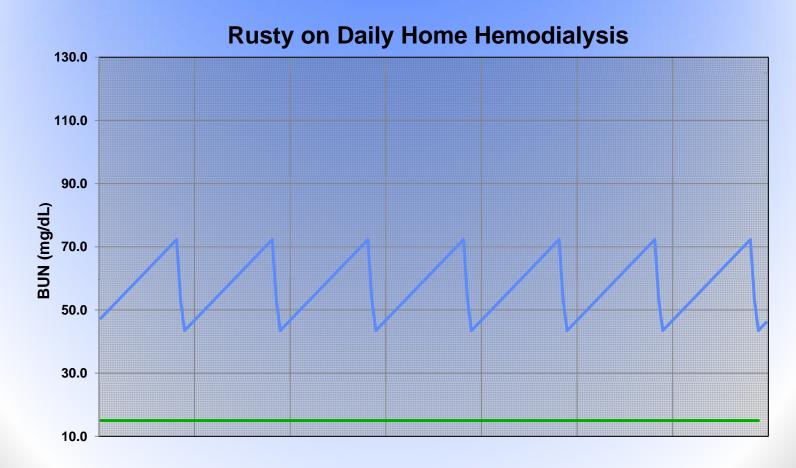
 $C_{BUN} = [(A_{BUN} - V_{BUN}) / A_{BUN}] \times Q_{B}$ $C_{BUN} = [(80 - 10) / 80] \times 300$ $C_{BUN} = 262 \text{ mL/min}$

Clearance vs. K_oA

- K_oA = Mass Transfer Coefficient for a Dialyzer
- K_oA is measured in mL/min.
- K_oA gives Clearance for Q_B and Q_D combinations.
- The range of K_oA values is 250 1200 mL/min.
- The higher the K_oA, the better the clearance.
- Once the K_oA for a dialyzer is known, the clearance of that dialyzer can be determined for any combination of blood and dialysate flow rates.
- Of course, there's an equation...

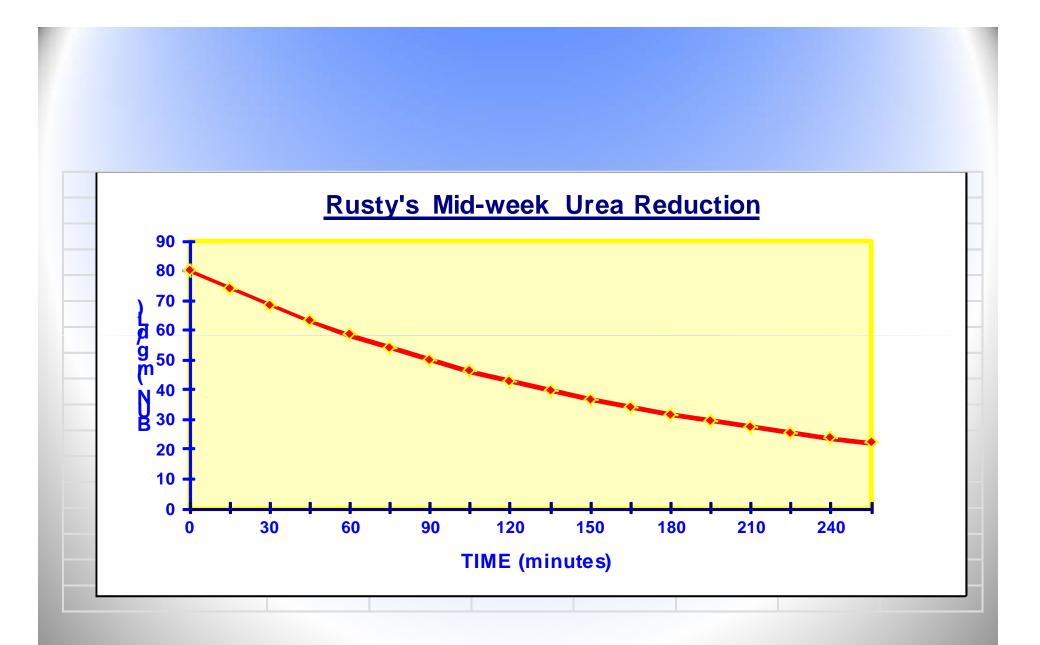

The K_oA Equation


$$KoA = \left[Q_B \middle/ 1 - \frac{Q_B}{Q_D} \right] \ln \left[\frac{1 - \frac{C_X}{Q_D}}{1 - \frac{C_X}{Q_B}} \right]$$

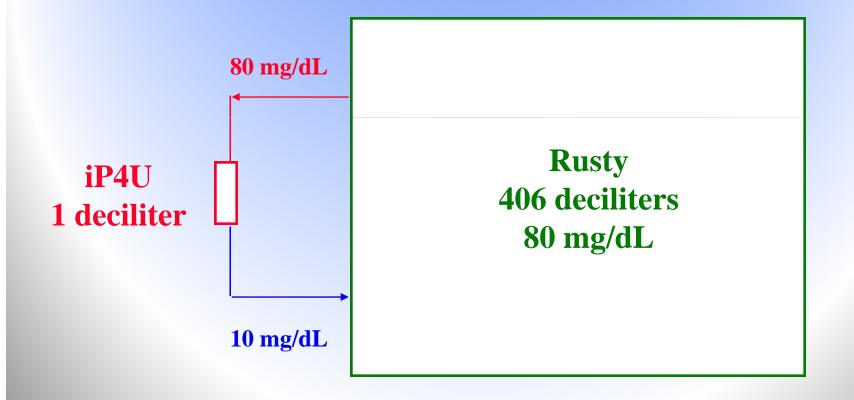

Where: $C_X = Clearance of solute, X$ $Q_B = Blood flowrate$ $Q_D = Dialysate flowrate$ ln = Natural logarithme = 2.718281828.....

BUN of Venous Blood based on Dialyzer KoA

	<u>QB = 300 mL/min</u>		<u>QD = 6</u>	00 mL/mi	<u>n</u>		
KoA	Clearance	Arterial Blood BUN Values (mg/dL)					
(mL/min)	(mL/min)	70	80	90	100	110	
500	217	19.4	22.1	24.9	27.7	30.4	
600	232	15.9	18.1	20.4	22.7	24.9	
700	245	12.8	14.7	16.5	18.3	20.2	
800	254	10.7	12.3	13.8	15.3	16.9	
900	262	8.9	10.1	11.4	12.7	13.9	
1000	269	7.2	8.3	9.3	10.3	11.4	
1100	274	6.1	6.9	7.8	8.7	9.5	
1200	278	5.1	5.9	6.6	7.3	8.1	



BUN (mg/dL) Variation Comparison							
	Avg. BUN	Std. Dev.	Highest	Lowest	Range		
3X/WK	55.6	19.4	100.7	22.3	78.4		
7X/WK	57.7	8.5	72.3	43.7	28.8		


Urea Reduction Formula (UFR = 0.0 mL/hr)

$C = C_0 e^{-Kt/V} + G/K (1 - e^{-Kt/V})$

- C = Plasma BUN Concentration (mg/mL)*
- C₀ = Predialysis BUN Concentration (mg/mL)*
- K = Dialyzer Clearance (mL/min)
- t = time (minutes)
- V = Patient Volume (mL)
- **G** = Generation of urea (mg/min)
- * mg/mL equals mg/dL divided by 100.

Volume: Dialyzer vs. Rusty

Rusty's Week on Dialysis

URINE LUCK DIALYSIS CENTER

	<u>TRX #1</u>	<u>TRX #2</u>	<u>TRX #3</u>
	Monday	Wednesday	Friday
Pre BUN (mg/dL)	100.7	80.0	74.5
Post BUN (mg/dL)	29.2	23.7	22.3
URR	71.0%	70.4%	70.1%
Kt/V	1.33	1.33	1.33
BUN Removed (g)	29.03	22.86	21.19
Urea Removed (g)	62.21	48.99	45.41

Rusty's Urea Loss

 $BUN_{REMOVED} = (BUN_{PRE} - BUN_{POST}) X V_{PATIENT}$ $BUN_{PRE} = 80.0 \text{ mg/dL} \qquad BUN_{POST} = 23.7 \text{ mg/dL}$ **Rusty's Volume = 406 deciliters** $BUN_{REMOVED} = (80.0 - 23.7) X 406$ = 22,858 mg = 22.9 grams **UREA**_{REMOVED} = (60/28) X 22.9 grams = 49.0 grams

Urea down the Drain

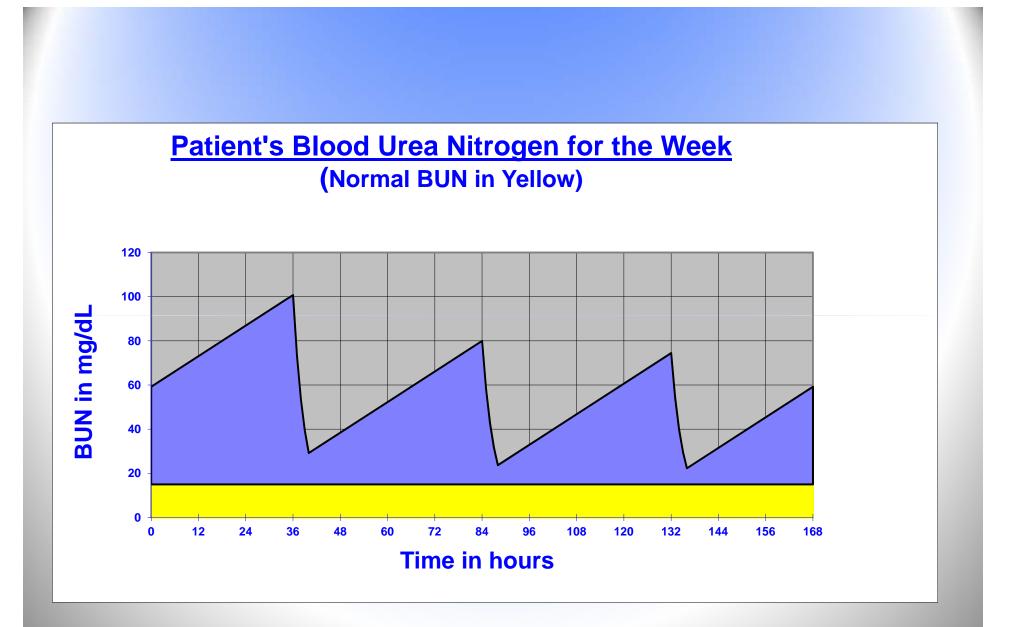
URINE LUCK DIALYSIS CENTER

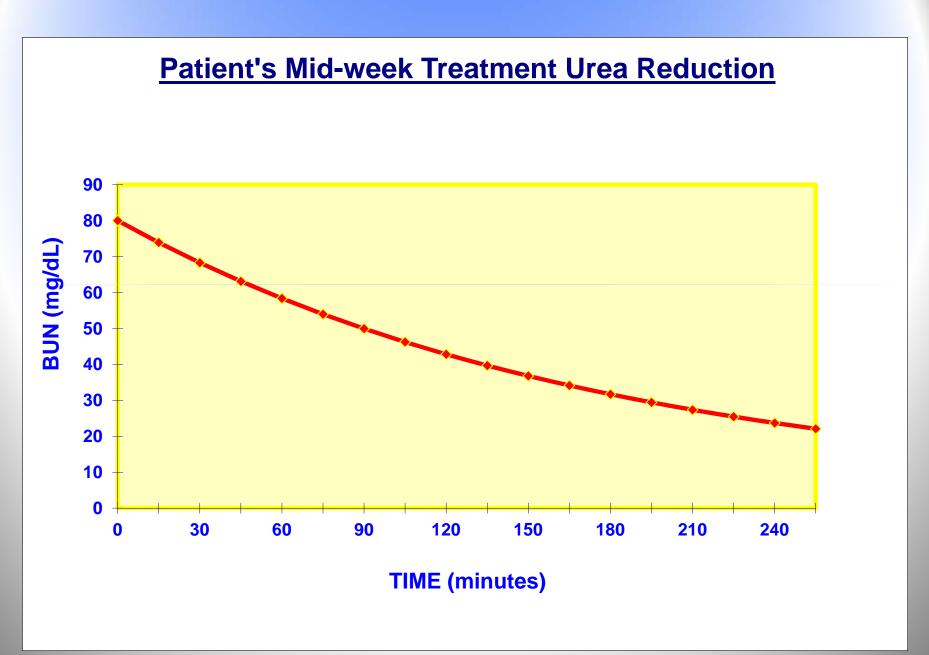
3

- Number of stations: 20
- Shifts per day:
- Days of operation:
- Number of patients:
- Avg. urea loss / R_x:
- Total R_x per week:
- Total drain urea:
- Equivalent urine:

Monday - Saturday

105


52.2 grams (24.4 g BUN) 295


15.4 kg/wk (33.9 lbs/wk)

1,660 liters (438 gallons)

Additional Urine Information

- Urine composition:
 - 950 grams of water
 - 9.3 grams Urea
 - 1.87 grams Chloride
 - 1.17 grams Sodium
 - 0.75 grams Potassium
 - 0.67 grams of Creatinine
- It's color comes from Urobilin from the breakdown of Hemoglobin
- **Specific Gravity = 1.003 1.035 g/cm³**
- After eating Asparagus, urine will contain Asparagusic acid!

