

- Human aren't equipped to detect it ... until it's to late !
- You have five senses:
 - See (10,000 volts)
 - Hear (5,000 volts)
 - Taste (???)
 - Smell (ozone from movement in air)
 - Feel (a/c > 20 volts, static > 3,000 volts)
- Skin is your best protection if it's dry.
- Electricity tends to flow on the outside of the body. The heart is mid-torso.

Basic Electron Characteristics

- The electron was "discovered" in 1897 by Sir J. J. Thompson (Noble prize – 1906)
- Electrons create an electrical field which can apply force on other charged particles in their vicinity.
 - Like charges repel
 - Opposite charges attract
- The measure of this force was done by Charles Coulomb in 1784. ($F = k \frac{qq''}{r^2}$)
- Electrons in motion create magnetic fields

Electrical Terminology

- <u>Volt</u> measure of potential energy in an electric field. 1 volt = one joule of energy per one coulomb of charge. (1 watt = 1 joule/second)
 - Alessandro Volta (1745 1827)
 - Created the first chemical battery
- <u>Coulomb</u> mks system's unit of charge. 1 coulomb of charge passing a point in a wire in 1 second equals one ampere. 1 coulomb = 6.24×10^{18} electrons
 - Charles Augustin Coulomb (1736 1806)

Electrical Terminology

- <u>Ampere</u> The unit of current = a "flow rate" of one coulomb per second in a wire
 - Andre Marie Ampere (1775 1836)
 - Established the relationship between electricity and magnetism.
- <u>Ohm</u> the unit of resistance = 1 ohm is the ratio of one volt/one ampere. The reciprocal of resistance is conductance.
 - Georg Simon Ohm (1789 1854)
 - Discovered the direct proportionality of current in a conductor to the voltage applied (V = IR, R = V/I, I = V/R)

Electrical Terminology

- <u>Watt</u> Unit of power in the mks system. The rate of using energy. 1 watt equals 1 joule of energy per second. 1 watt = 1 volt x 1 ampere. $P = VI = I^2R = V^2/R$
 - James Watt (1736 1819)
 - Inventor of the first highly efficient steam engine
 - Developed the concept of horsepower
 - About your electric bill:
 - You purchase electricity (actually energy) in kilowatt-hours (kwh)
 - 1 kwh = 1000 watt-hours = 3,600,000 watt-seconds = 3.6 x 10⁶ joules
 - 1 kwh = energy to run a 100 watt light bulb for 10 hours

Electricity vs. Water

ELECTRICAL CONCEPT	WATER CONCEPT
Voltage (volts)	Pressure (P.S.I.)
Current (ampere)	Flow Rate (mL/min)
Resistance (ohms)	Restriction (Δ P.S.I.)
Wire (A.W.G.*)	Pipe (diameter)
Capacitor (µfarad)	Tank (gallons)
Power Source (outlet)	Water source (water main)
Leakage current (µamp)	Water leak (mL)

* = American Wire Gauge (works like needles – the higher the number the smaller the wire)

Fluke 87 Multimeter

<u>Yellow Button</u> – selects capacitance in ohms position, temperature in mV position and ac or dc current in ampere positions.

<u>Min Max</u> – Records MAX, MIN, AVG, and present reading over time for any switch position

<u>Range</u> – Switches between available ranges for selected function and between °F and °C

<u>AutoHOLD</u> – captures reading on display and beeps

<u>Beeper</u> – Turns the beeper on/off for continuity checks

<u>Rel Δ </u> - creates reference value and compares all future readings to the reference value

Hz % - Switches to frequency measurements

Applying the concepts

- What is the expected resistance of a 1000 watt heater rod rated for 120 volts?
 - $P = V^2/R$ therefore $R = V^2/P$
 - R = (120)²/1000 = 14400/1000 = 14.4 ohms
- Under the same voltage requirement will a 2000 watt heater rod have a higher or lower resistance than the 1000 watt rod?

Fundamental Trouble Shooting

- There are only two reasons an electrical component will not work.
 - It has no power
 - The component is broken
- Checking for power
 - Is the Power source functioning?
 - Is the device plugged in?
 - Is it fused properly? Fuses don't just fail!
 - Does it run off a power supply? What voltage?
 - Is that voltage being applied to the component?

Trouble shooting a component

- First, you must know how the component operates.
- Components like thermistors, solenoids, and photoresistors can be tested for resistance.
- Solid state circuits cannot be tested using a multimeter. Exchanging circuits may be the only way to verify failure, but check the power first!
- Wires should always have low resistance.
- Diodes conduct in one direction, but not the other.
- Conductivity cells can't be tested for resistance.

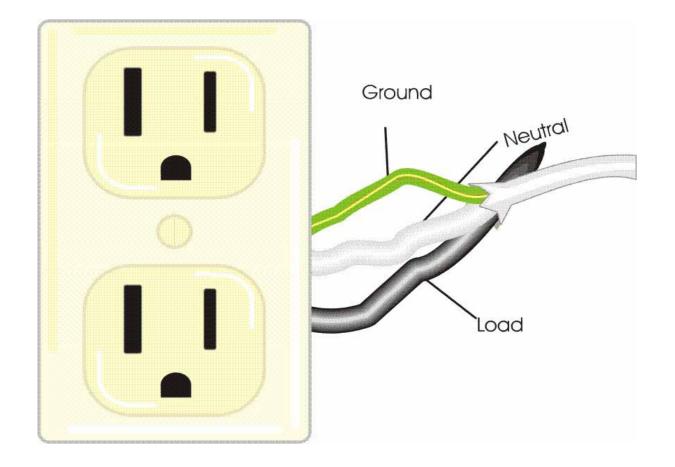
The Patient at Risk

- Skin protection is voided by metal fistula needles.
- The needles are inserted into an electrolyte (blood).
- The electrolyte path is directly to the heart.
- The patient can make direct contact with the dialysis equipment.

Medical Electrical Equipment

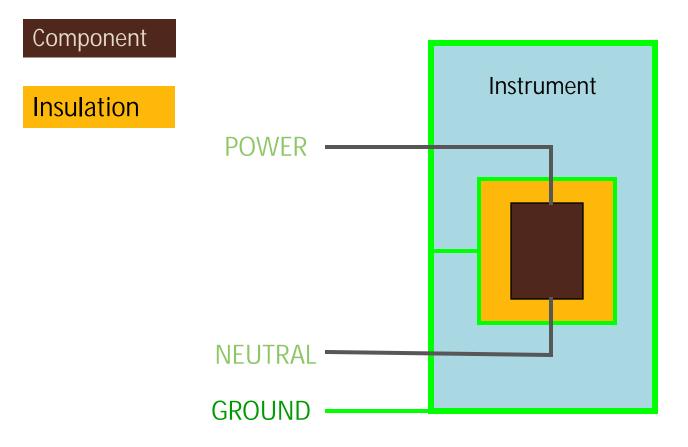
– Defined in IEC 60601 – 1 Section 2.2.15

- One connection to a Supply Mains
- Intended to diagnose, treat, or monitor the patient under medical supervision
- Patient Interface:
 - Makes physical or electrical contact to patient
 - Transfers energy to or from the patient
 - Detects energy transfer to or from the patient


Class I Equipment

- Applies to Hemodialysis Equipment
- Protection from electrical shock does not rely on basic insulation only.
- Means provided for connection to a protective earth conductor.
 - Uses fixed wiring through an a/c power cord.
 - Accessible metal parts can't become "live" if basic insulation fails.

Class 1 Equipment Types


- Type CF
 - applied parts in direct contact with the heart
 - doesn't apply to hemodialysis equipment
- Type BF (Blood Pump)
 - less stringent than CF
 - Have conductive patient contact (not the heart)
 - have medium to long contact times
 - no earth ground connection
- Type B (Hemodialysis Machine)
 - least stringent
 - applied parts not conductive
 - Can be immediately released from patient
 - May connect to earth ground

Everything Must Go to Electrical Ground!

Preventing Shock by Grounding

AAMI Standards

- ANSI/AAMI/ISO 60601-2-16 Standards (2008)
- Medical Electrical Equipment
- Electric Safety Requirements
 - Non-isolated Patient Connection.
 - Chassis risk current = 100 microamperes.
 - Patient risk current = 50 microamperes.
 - Electrical Ground Required.
 - Metal/Components Corrosion Resistant.
 - Instrument Outlets Shielding from fluid spills
 - Electric circuits separate from hydraulics.
 - Supply mains electrical failure for system and components must create audible alarm.

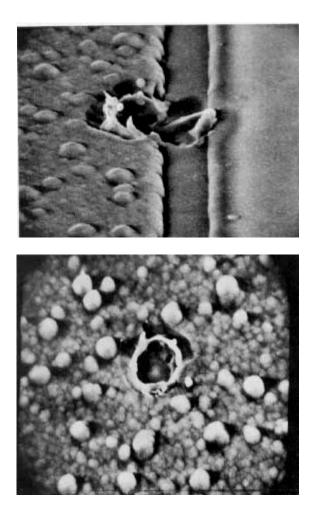
The IEC 60601-1 Safety Tests

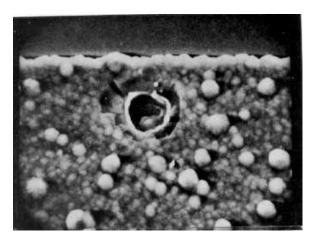
- Earth leakage current.
 - Current through the ground conductor
 - Max = 0.5 mA for Normal Condition
 - Max = 1.0 mA for Single Fault Condition
- Enclosed leakage current.
 - Current from an enclosure if touched
 - Max = 0.3 mA patient vicinity
 - Max = 0.5 mA nonpatient area
- Applied part leakage.
 - Called patient lead leakage
 - Any flow from, between, or into an applied part.

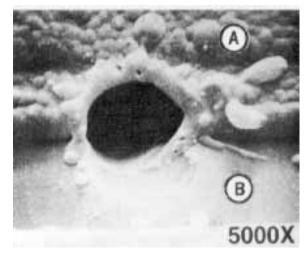
MEANS OF STATIC GENERATION	10 TO 20% RELATIVE HUMIDITY	65 TO 90% RELATIVE HUMIDITY
WALKING ACROSS A CARPET	35,000	1,500
WALKING OVER A VINYL FLOOR	12,000	250
COMMON POLY BAG PICKED UP FROM BENCH	20,000	1,200
WORK CHAIR PADDED WITH POLYURETHANE FOAM	18,000	1,500
WORKER AT BENCH	6,000	100

Owen J. McAteer Military Electronics/Countermeasures

Semiconductor Sensitivities




Device Type	Threshold Susceptibility (volts)
MOSFET	10-100
EPROM	100+
CMOS	200-3,000
ОрАМР	190-2,500
Schottky Diode	300-2,500
Film Resistor	300-3,000
SCR	500-1000



DAMAGES CAUSED BY ESD

ociation stan

ANSI/ESD S20.20-1999

for the Development of an Electrostatic Discharge Control Program for –

Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices) The Industry Standard for ESD is ANSI/ESD S20.20

ESD Standard

Electrostatic Discharge Association 7900 Turin Road, Bldg 3, Ste 2 Rome, NY 13440-2069

An American National Standard Approved August 4, 1999