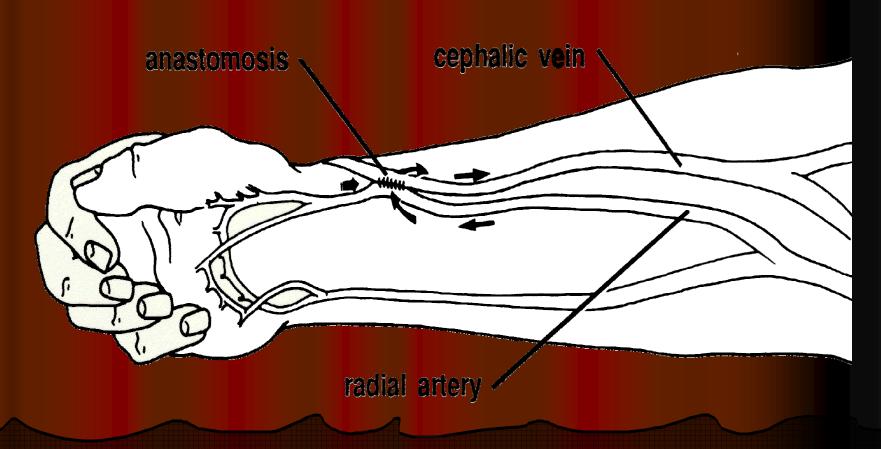
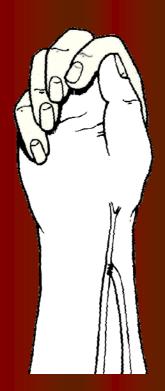
Hemodialysis Access / Heparinization


Katherine Meetz, RN CDN
Senior Clinical Support Specialist
Renal Therapy Group
Fresenius Medical Care of NA

Access Historical Background

- 1940's
 - surgical cutdown, glass/metal tubes
- 1950's
 - polyvinyl chloride/plastic material
- 1960's
 - -Teflon tubes, connected externally Shunt
 - -Forearm internal arteriovenous fistula AVF
- 1970's
 - Internal synthetic graft material AVG
 - Temporary access via special catheter subclavian/internal jugular vein (IJ)
- 1980's
 - "Button" needle- free form of vascular access

Internal Access


Ateriovenous fistula (AVF)

AV Fistula Anastamosis Placements

Side-to-Side

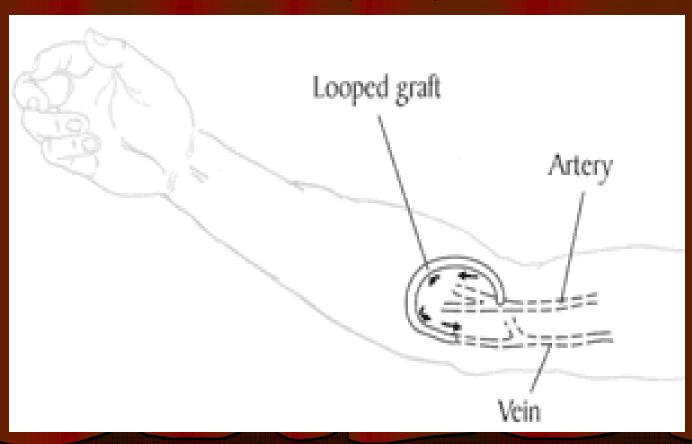
Side-to-End

End-to-Side

End-to-End

AV Fistula

- Advantages
 - Longevity
 - Lower incidence of clotting
 - Lower incidence of infection
 - One anastomosis
 - Collateral circulation


- Disadvantages
 - Length of time for maturation
 - Failure of vein to enlarge
 - Poor Blood flow
 - More difficult to cannulate
 - Hematoma

Complications of the AVF

- Poor Flow
- Thrombosis
- Pseudoaneurysms
- Infection
- Steal syndrome
- Aneurysms

Internal Access

Arteriovenous Graft (AVG)

AV Graft

- Advantages
 - Use sooner than an AVF
 - Larger cannulation site
 - Size and blood flow are not dependent on maturation

- Disadvantages
 - Higher rate of infection
 - Bleeding time
 - Higher rate of thrombosis
 - No development of collateral circulation

Complications of the AVG

- Thrombosis
- Infection
- Steal syndrome
- Pseudoaneurysms
- Stenosis and Thrombosis

Detection of Stenosis/Thrombosis AVF and AVG

- Venous pressure > 150 mm/hg @ 200-225 ml/min blood flows
- Intragraft pressures > 50 mm/hg with blood pump off
- Recirculation > 15%
- Physical findings
- Color doppler ultrasound
- Angiography

Venipuncture Considerations AVF and AVG

- Assess for signs/symptom of infection
- Palpate the access
- Rotate insertion sites to maintain integrity
- Select sites for proper placement of needle tips
- Prepare sites appropriately
- Apply a non-occlusive tourniquet

Venipuncture Considerations AVF and AVG

- Pull skin taut in opposite direction of insertion
- Common angle of insertion:
 - * 20-35 degrees for AVF
 - * 45 degrees for AVG
- Never force a needle
- Needles should not be "flipped"
- Do Not flatten the angle of the needle with taping

Hemostasis AVF and AVG

Mild to moderate pressure applied to site

Use of two fingers to hold pressure

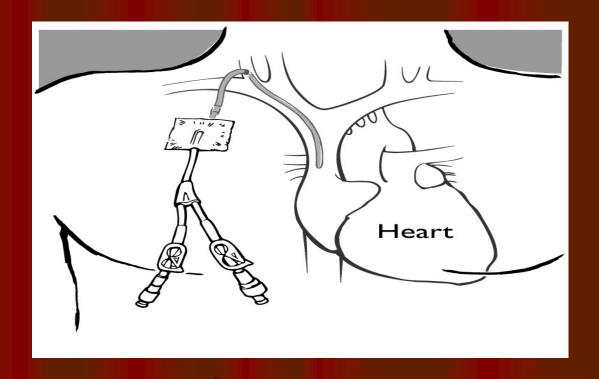
Assure blood flow through the vessel

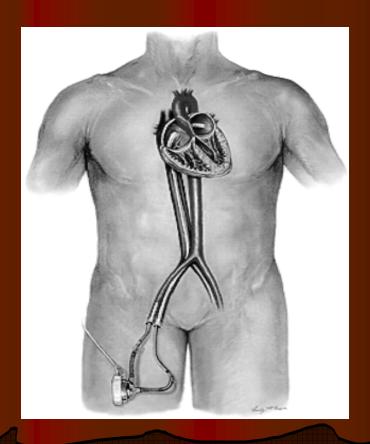
Rules for prolonged bleeding

Hematoma – Infiltration Management AVF and AVG

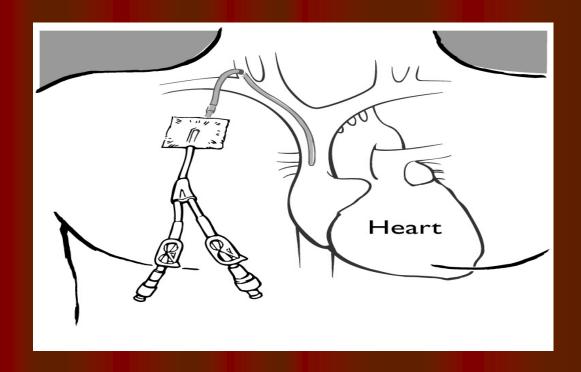
Initiation of therapy

During therapy


Post therapy


CVC Locations

Subclavian


CVC Locations

Femoral vein

CVC Location

Internal jugular vein

CVC Complications

- Insertion related
- Infection
- Thrombosis
- Central Venous Stenosis
- Perforation

Heparinization

Coagulation

Coagulation:

- Is a complex process by which blood forms clots
- Is an important part of hemostasis
- Involves both a cellular and protein component
- Begins almost instantly after injury to a blood vessel

Coagulation Cascade

- Platelet Activation
- Coagulation cascade
 - Tissue Factor
 - Contact Activation
 - Final common pathway
- Regulators
- Fibrinolysis

Heparin

- Natural substance in our body
- Commercially prepared from animal mucosa
- Is given parenterally
- Does not dialyze off
- Does not dissolve clots
- Effects can be reversed

Anticoagulation Cascade with Heparin

- Heparin binds to Antithrombin
- Antithrombin inhibits prothrombin to thrombin formation
- Thrombin to Fibrinogen is inhibited
- Fibrinogen is unable to convert to fibrin

Heparinization - Methodology

- Systemic
- Regional
- Baseline
- Controlled
- Tight

Anticoagulation Tests

Whole blood clotting time

Whole blood activated clotting time

Whole blood partial thrombplastin time

Principles of Anticoagulation

Computerized Model

Heparinization based on patient weight

Heparinzation based on Dr Ward Formula

Importance of Proper Heparinization

- Communication
- Optimal Outcomes
 - anemia
 - URR clearance
 - Reuse
 - Ultimately Patient Quality of life

What Happens in Vegas stays in Vegas

What is Learned in Vegas Stays with YOU in providing optimal patient care!

References

- Judith Z. Kallenbach, C. F. Gutch, Martha H. Stoner, Anna L. Corea (2005). Review of Hemodialysis for Nurses and Dialysis Personnel, seventh edition
- Furie B, Furie BC (2205). "Thrombus formation in vivo (http://www.jci.org/cgi/content/full/115/12/3355)"
- Carbone, Vera (1995). Heparin and Dialyzer Membranes during Hemodialysis: A Literature Review, ANNA Journal, Volume 22, Number 3
- Ward, Richard A. (1995). Heparinization for Routine Hemodialysis, Advances in Renal Replacement Therapy, Volume 2, No. 4, October
- Wei, S.S., Ellis, P.W., et al (1994). Effects of Heparin Modeling on Delivered Hemodialysis Therapy, American Journal of Kidney Diseases, Volume 23, Number 3, March
- Contributing Authors, Patiricia A. Loughren, Reg. N, MA (ED), Gail Wick, BSN, RN, CNN, (2003). Dialysis Technology, National Association of Nephrology Technicians / Technologists, Third Edition