Chlorine, Chlorination, Chlorine Measurement

Ohm Kongtang Hach Company

Disinfection

- To kill or inactivate organisms capable of causing disease
- Typically viewed as use of a chemical such as chlorine, chlorine dioxide, iodine, chloramines, ozone

Practical Disinfection

- As a practical matter, the entire water process should be viewed as part of the disinfection process.
- Chemical disinfectants complement and are complemented by the other processes

Disinfection Considerations

- Effectiveness of disinfection is influenced by:
 - pH
 - Temperature
 - Contact time
 - Type and population of organism
 - Type and concentration of disinfectant
 - Chemical and physical character of the water

Chlorine

- A chemical element identified in 1774 by Scheele. Atomic No.17. Atomic mass 35.5
- Chlorine from the Greek Chloros, meaning greenish yellow
- First used to deodorize sewers in London in the 1830's (germ theory of disease was not expressed until almost 50 years later)
- Classified by USDOT as non-flammable, compressed gas

Uses of Chlorine

- Water
 - Disinfection
 - Enhanced
 coagulation
 - Taste and odor control
- Industrial Water
 - Control slime
 - Control/destroy
 phenols and cyanide

- Wastewater
 - Disinfection
 - Odor control
 - Reduce BOD
 - Control filter flies
 - Control ponding on trickling filters

Chemical Properties of Chlorine

- Highly reactive, never found free (CI) in nature. Always found combined with other elements or itself (Cl₂)
- Non-flammable, non-explosive
- Supports combustion of many substances
- Usually forms univalent compounds, NaCl, but may exist as -1, +1, +3, +5 or +7
- Slightly soluble in water, reacts to form hydrochloric and hypochlorous acids

Chemical Properties (cont.)

- Reaction with metals is dependent upon temperature and presence of moisture.
 Dry, clean metals (Cu, Pb, Ni, Pt, Ag, steel) below 121 °C (250 °F) are resistant to chlorine
- Violent (explosive) reaction with organic compounds diesel fuel, vegetable matter
- Reacts with many inorganic elements and compounds - KCI, CaCl₂

Physical Properties of Chlorine

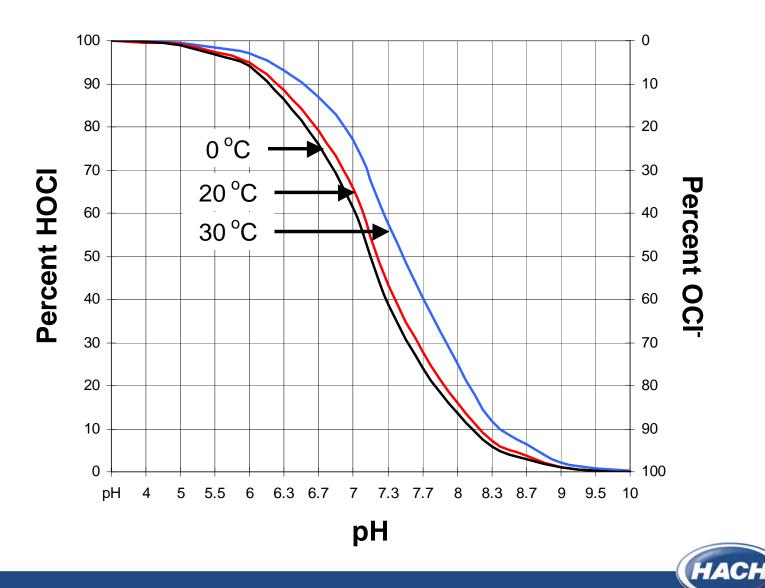
- Boiling Point -34 °C (-29.29 °F)
- Melting Point -100 °C (-150 °F)
- One volume of liquid will become 457.6 volumes of gas at STP (high expansion rate)
- Cl₂ gas is 2.48 times the density of air
- Liquid Cl₂ (compressed gas) is 1.468 times the density of water (at 4 °C/39 °F)

Chlorine Terminology

- Chlorine A chemical element
- Liquid chlorine liquefied compressed gas
- Dry chlorine chlorine gas or liquid containing < 150 mg/l of water
- Moist (wet) chlorine chlorine gas or liquid containing > 150 mg/l of water
- Chlorine solution solution of chlorine and water (HOCI, OCI⁻)
- Liquid bleach solution of sodium hypochlorite

Reaction with Water

• Forms hydrochloric (HCI) and hypochlorous (HOCI) acids:


 $CI_2 + H_2O \longrightarrow HOCI + H^+ + CI^-$

- Reaction is reversible. Above pH 4, reaction is to the right
- HOCI dissociates to the hydrogen ion and hypochlorite ion (OCI⁻) varying with temperature and pH

HOCI
$$\longleftrightarrow$$
 H⁺ + OCI⁻

HOCI vs. OCI⁻

12

Be Right[™]

Free Available Chlorine

 Chlorine existing in water as hypochlorous acid (HOCI) or the hypochlorite ion (OCI⁻) is defined as free available chlorine

Hypochlorite Salts

- Salts used for chlorination include
 - -Lithium hypochlorite LiOCI LiOCI + $H_20 \longrightarrow Li^+ + HOCI + OH^-$
 - -Sodium hypochlorite NaOCI NaOCI + $H_20 \longrightarrow Na^+ + HOCI + OH^-$
 - –Calcium hypochlorite Ca(OCI)₂
 - $Ca(OCI)_2 + 2H_20 \longrightarrow Ca^{2+} + 2HOCI + 2OH^{-1}$

Combined Chlorine

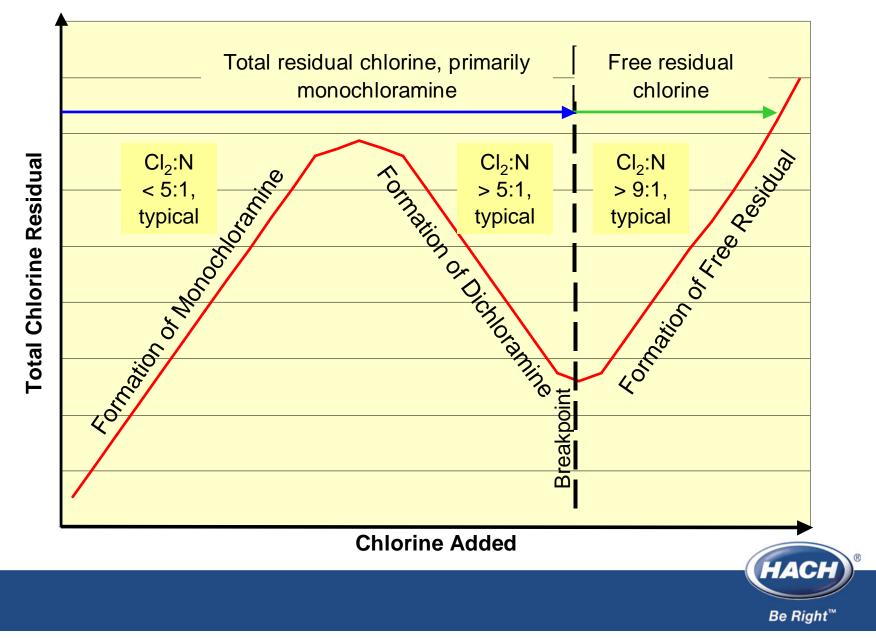
- Chlorine (HOCI and OCI⁻) reacts with ammonia to form chloramines, commonly referred to as 'combined chlorine'
- The predominate species are monochloramine and dichloramine. A small fraction is trichloramine or nitrogen trichloride

Chloramine Formation

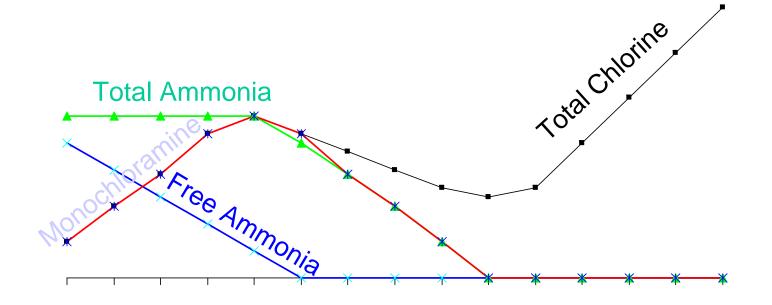
• Monochloramine - NH₂Cl

 $NH_3 + HOCI \longrightarrow NH_2CI + H_2O$

- Dichloramine $NHCl_2$ $NH_2CI + HOCI \longrightarrow NHCl_2 + H_2O$
- Tricholoramine (Nitrogen Trichloride) NCI_3 NHCI₂ + HOCI \longrightarrow NCI₃ + H₂O
- Chloramines are not as effective disinfectants as free chlorine



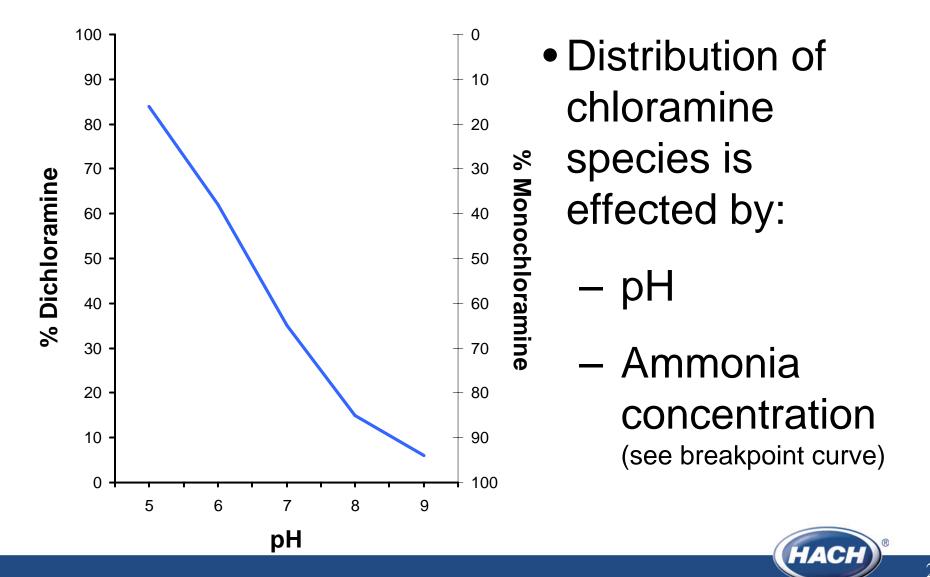
Definition of Unreacted Ammonia


- Ammonia in solution as
 - -NH₃ Free ammonia gas dissolved in water or;
 - $-NH_4^-$ The ammonium ion

Breakpoint Curve

*Know where you are! *Know what species you are making!

19

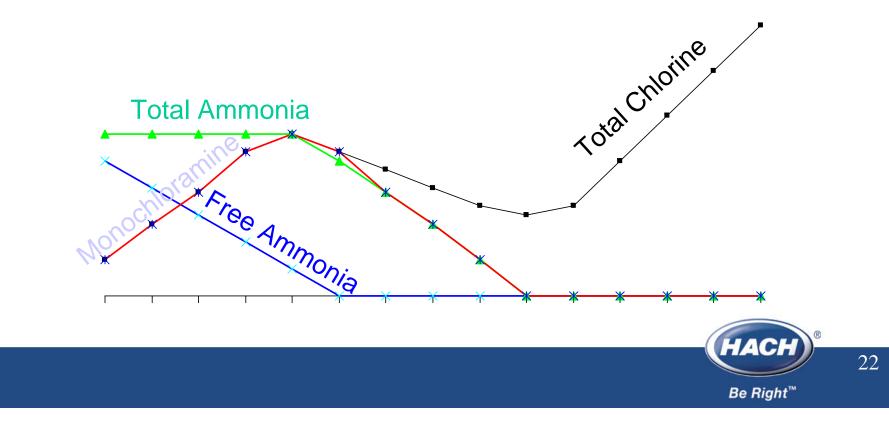

Breakpoint Curve Considerations

- Shape of the curve is dependent upon
 - amount of ammonia and other chlorine
 demand substances in the water
 - -temperature
 - -pH
 - -contact time
- Most effective disinfection, least taste and odor occurs with free residual chlorine
- Free chlorine may lead to formation of DBP

HAC

Be Riaht

Effect of pH on Chloramine Species



21

Be Right[™]

The APA6000[™] Can Help

*Know where you are! *Know what species you are making!

Chloramines

- Less effective disinfection than free chlorine.
 HOCI is 25X more effective biocide
- Chloramines require longer contact time and/or greater concentration than free chlorine.
- Possible taste and odor (dichloramine)
- More stable than free chlorine (long distribution systems)
- Generally do not produce DBP (NH₂Cl may form DBP, but are not as hazardous)

Chloramination

- Chloramination: Purposeful use of chlorine and ammonia to form monochloramine.
 - Minimizes formation of chlorinated organics
 - Ammonia to chlorine Ratio is controlled to favor formation of monochloramine, typically 5:1 Cl₂:N
- Total residual chlorine test: All free and combined chlorine species

Advantages of The APA6000TM

- Specifically measures monochloramine
- Provides measurement for total and free ammonia
- Single analyzer to optimize chloramination
- Auto-calibrations and sample sequencing

Interference's

Species	Conc (mg/L)	Interference	Species	Conc (mg/L)	Interference	
Al	10	None	ClO ₃ ¹⁻	10	None	
В	10	None	ClO ₂ ¹⁻	10	None	
Cr	10	None	NO ₃ ³⁻	10	None	
Fe	10	None	F	10	None	
Pb	10	None	CO ₃ ²⁻	10	None	
Mg	10	None	PO ₄ ³⁻	10	None	
Mn	10	None	Cľ	10	None	
Ni	10	None	H ₂ O ₂	0.03%v/v	None	
Na	10	None	O ₃	~20 ppm/min	+	
Zn	10	None	Cysteine	3	None	
SO ₄ ²⁻	10	None	Tyrosine	3	None	
			Diethylamine	3	None	

Only Ozone!

26

Dechlorination

- After super chlorination or before discharge from a treatment process to a stream or lake
 - Sulfur Dioxide SO₂
 - -Sodium Bisulfite NaHSO₃
 - -Sodium Sulfite Na₂SO₃
 - -Sodium Thiosulfate Na₂S₂O₃
 - -Activated Carbon C

Dechlorination with Sulfur Dioxide

- Sulfur dioxide forms sulfurous acid with water: $SO_2 + H_2O \rightarrow H_2SO_3$, then
- $H_2SO_3 + HOCI \rightarrow HCI + H_2SO_4$
- $H_2SO_3 + NH_2CI + H_2O \longrightarrow NH_4CI + H_2SO_4$
- $H_2SO_3 + NHCI_2 + 2H_2O \rightarrow NH_4CI + HCI + 2H_2SO_4$
- $H_2SO_3 + NCI_3 + 3H_2O \longrightarrow NH_4CI + 2HCI + 3H_2SO_4$

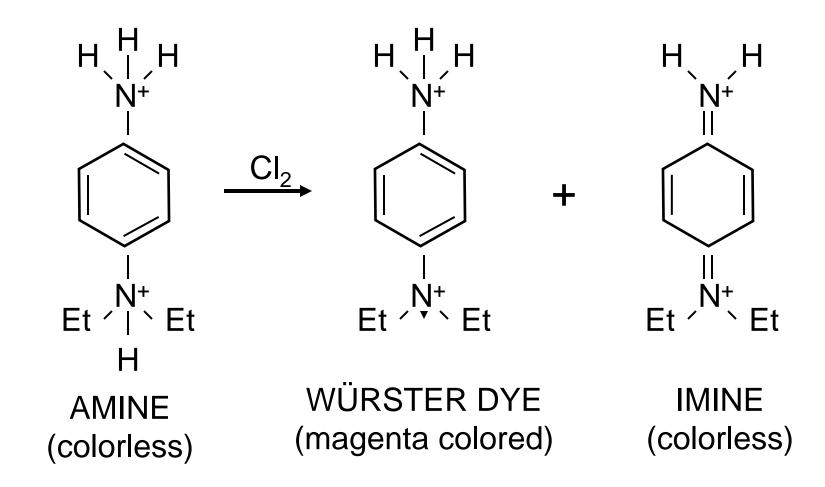
Analytical Methods for Chlorine and Chloramine

- DPD Colorimetric and Titration
- Amperometric Titration
- Monochlor-F Chloramine
- Iodometric Titration
- Orthotolidine
- Syringaldazine (FACTS)
- Potentiometric electrode

Comparison of Methods

Method	Range mg/l	Detection Level	%RSD	Use	Skill
DPD colorimetric	0-5	0.005	1-2	F & T	1
Ultra low-range DPD colorimetric	0-0.500	0.002	5-6	Т	2
DPD titration	0-3	0.018	2-7	F & T	2
Iodometric	Up to 4%	1	NR	Total Oxidants	2
Amperometric Titration - Forward	Up to 10	0.015	1-2	F & T	3
-Back	0.006-1	0.006	15	Т	3
Electrode	0-1	0.05	10	Total Oxidants	2
Monochlor-F W WW	0-4.5 0-10	0.09	2	Mono- chloramine	1

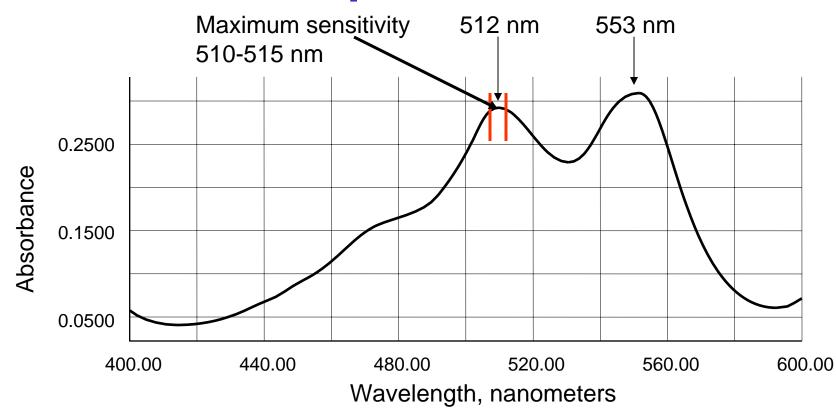
Skill Level: 1= Minimal training; 3 = Experienced


30

DPD Colorimetric Method

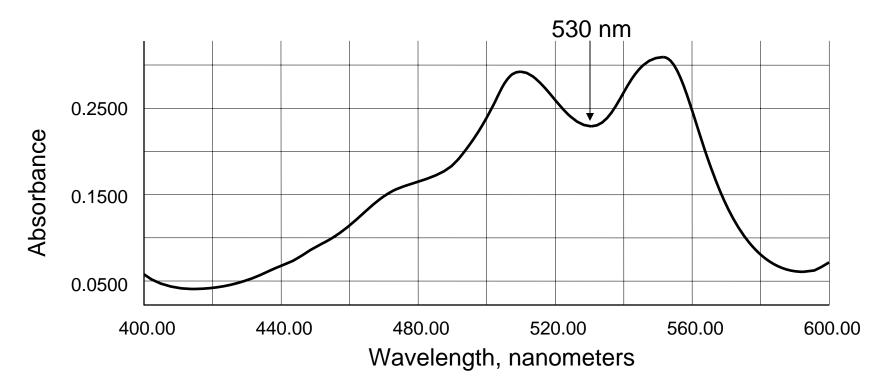
- Introduced by Palin in 1957
- Chlorine oxidizes DPD (N,N-diethyl-pphenylenediamine) creating two reaction products
 - -At near neutral pH, the primary oxidation product is a Würster dye (magenta color)
 - DPD can be further oxidized to the relatively unstable imine compound (colorless)

DPD-Chlorine Reaction Products


32

DPD Würster Dye Absorbance

- DPD Würster dye may be measured photometrically at wavelengths from 490 to 555 nm.
- Absorption spectrum indicates a doublet peak with maxima at 512 and 553 nm
- Maximum sensitivity for measurements is between 510 and 515 nm


DPD Würster Dye Absorbance Spectrum

•Hach CI-17 on-line analyzer: 510 nm

•Hach Ultralow Range DPD (ULRDPD) method: 515 nm

Most Hach tests use wavelength of 530 nm to

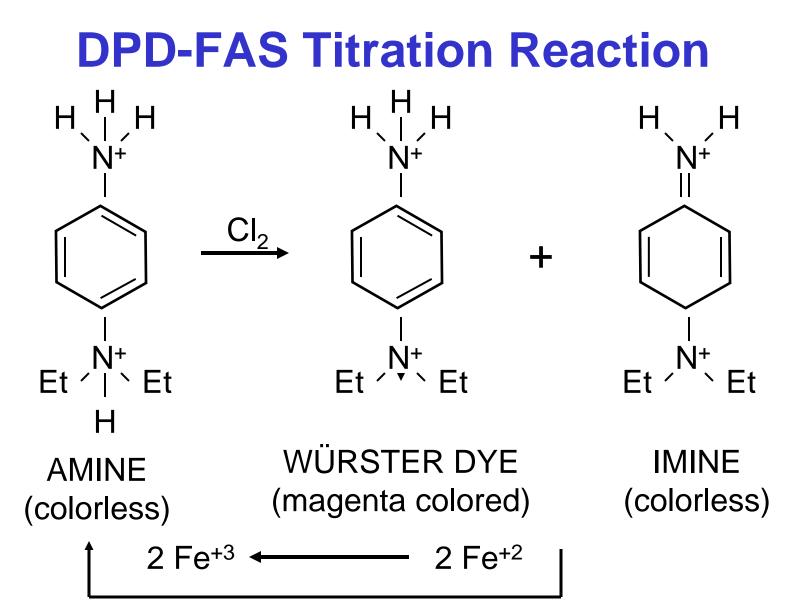
-minimize variation in wavelength accuracy

-extend working range on some instruments

CL17 Chlorine Analyzer

Pocket Colorimeter

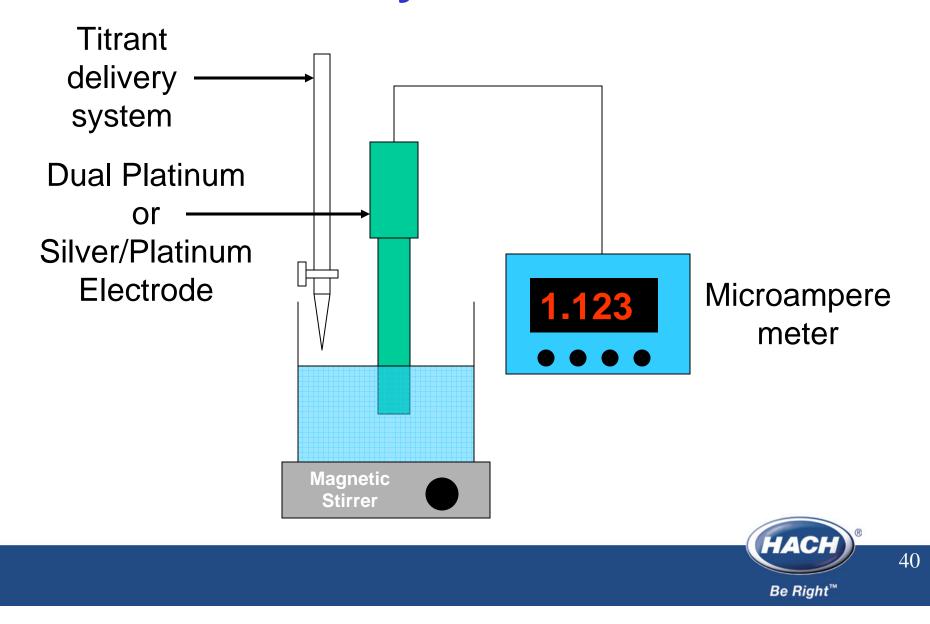
Color comparators should be avoided when practical



36

DPD-FAS Titration Method

- DPD-FAS (ferrous ammonium sulfate) titration method is based on the same chemistry as the colorimetric method
- Magenta Würster dye is titrated with the ferrous reducing agent to a colorless end point
- Hach uses ferrous ethyleneammonium sulfate (FEAS) to improve stability of the titrant solution



Amperometric Titration Methods

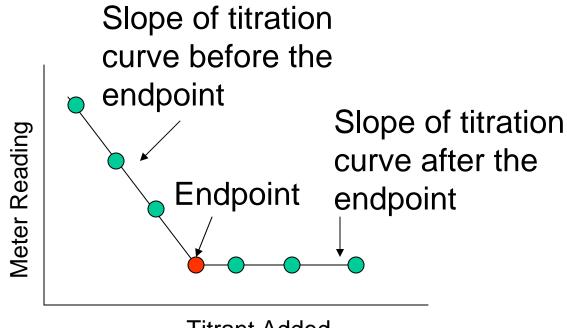
- Electrochemical technique applies small voltage across two electrodes
- Measures change in current resulting from chemical reactions
- Measures change in current vs. amount of titrant added
- Uses two platinum (bi-amperometric), or dissimilar electrodes (typically silver/platinum).
 - GLI AccuChlor2 uses gold/copper electrodes.

Typical Amperometric Titration System

Amperometric Reaction

- Titrant is either PAO* or thiosulfate
- Titration at pH 7 for free chlorine
- Titration at $pH \le 4$ for total chlorine
- Chlorine is reduced at the cathode
- Titrant oxidized at the anode

PhAsO (PAO) + Cl_2 + $2H_2O \longrightarrow PhAsO(OH)_2$ + $2Cl^-$ + $2H^+$ *Phenylarsine oxide Ph=phenyl



Amperometric Reaction (continued)

- Current flow continues as long as oxidation/reduction is occurring
- After all free chlorine is reacted, the current stops thus marking the end of the titration
- Chlorine concentration is proportional to the titrant used

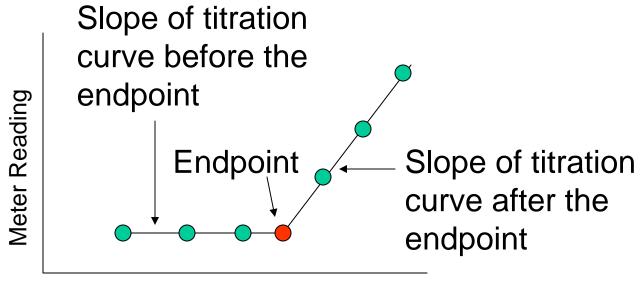
Typical Forward Titration

Titrant Added

Amperometric Chloramine Measurement

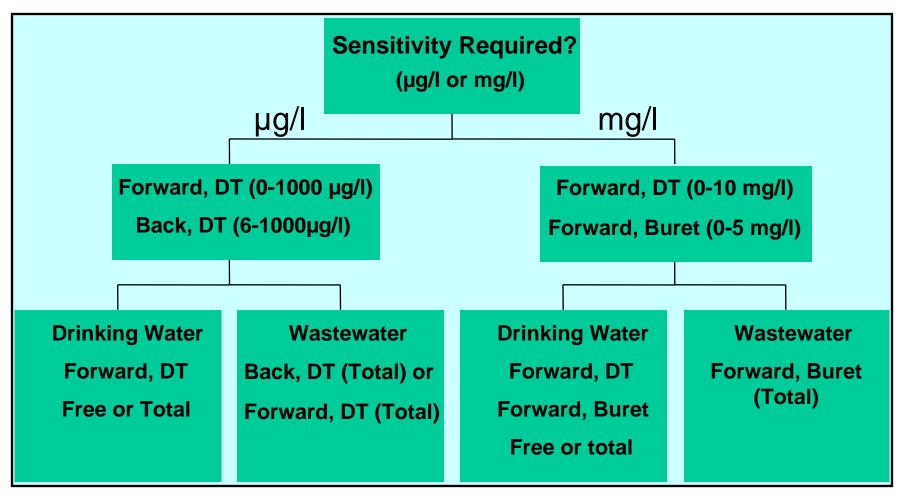
- Potassium lodide is added
- Reacts with chloramine to release triiodide ion, I₃⁻
- Triiodide is tritrated at pH 4

 $PhAsO (PAO) + I_{3}^{-} + 2H_{2}O \longrightarrow PhAsO(OH)_{2} + 3I^{-} + 2H^{+}$



Back Amperometric Titration

- Used to 'fix' the chlorine by addition of excess reductant
- Sample then is titrated with iodine or iodate
- Endpoint of the titration is the <u>beginning</u> of current flow


Typical Back Titration

Titrant Added

Selection of Amperometric Procedure

DT = Digital Titrator

Sampling Considerations

- Obtain a representative sample
- Allow water to flow at least 5 minutes prior to sampling
- Use chlorine demandfree sample containers
- Measure immediately on site except ULR-DPD and Amperometric
- Use different containers for free and total chlorine measurements
- Avoid exposure to sunlight or excess agitation

Be Right"

Common Interferences

- Other oxidants: CIO_2 , O_3 , Br_2 , H_2O_2 , I_{2} , $KMnO_4$
- Disinfection byproducts, I.e. chlorite and chlorate
- Particulate contamination turbidity

- Buffer capacity
- Sample color
- Mn⁺³ to Mn⁺⁷
- Cr +7
- Organic N-CI (organic chloramines in wastewater)

Compensating for Manganese Interference

- Split sample. Analyze first portion as usual
- Second Portion:
 - Adjust pH w/1N sulfuric acid
 - Add drops of 30 g/l potassium iodide; wait one minute
 - Add drops of 5 g/l sodium arsenite
 - Add DPD and complete test

 Subtract result of second portion from first portion

Sample			
Size	5 ml	10 ml	25 ml
H ₂ SO ₄ , 1N	Adjust to pH 6-7	Adjust to pH 6-7	Adjust to pH 6-7
Potassium Iodide, 30 g/l	2 drops	2 drops	3 drops
Sodium Arsenite, 5 g/l	2 drops	2 drops	3 drops

THANKS FOR YOUR TIME

QUESTIONS?????

