Dialysis Procedures
Dialysis Procedures

• It is simple. There are only 3 procedures:
 – Initiation
 – Monitoring
 – Discontinuation

• Well, maybe not so simple…
Initiation of Dialysis

- Pre Dialysis Safety Checks
- Initiation Procedures
- Immediate Post Initiation Procedures
Predialysis Safety Checks

- **Water system**
 - Temperature
 - Resistivity
 - Residual disinfectant
- **Prescribed Dialyzer & Concentrate**
- **Dialysis Machine Safety**
 - Alarms active
 - Dialysate conductivity &/or pH
- **Integrity of Extracorporeal Circuit**
- **If Dialyzer Reused**
 - Check patient’s name on label
 - Disinfectant residual test
Predialysis Patient Evaluation

• **Physical Parameters**
 - Weight • BP (stand & sit) • Temp
 - Pulse & Resp • Complaints

• **Evaluate Access Status**
 - Signs of infection – redness, tenderness, unusual warmth, purulent drainage
 - Patency
 - Graft & AVF: bruit, thrill
 - Catheter: easy aspiration (*post disinfection*)
 - Direction of flow (identify A & V)

• **Follow Universal Precautions**
 - Wash hands • Glove • Gown
 - Eye protection • Mask
Initiation of Dialysis

- **Graft/Fistula**
 - Select sites
 - Disinfect
 - Anesthetize
 - Insert needles

- **Catheters**
 - Disinfect catheter limbs
 - Aspirate heparin from limbs
 - Evaluate patency

- **Draw Blood Work**
 - Prior to administering heparin
 - From arterial port
 - Administer heparin post draw

- **Initiate Blood Flow to Dialyzer**
 - Connect lines
 - Start at low BFR
Post Initiation

• **Calculate/Apply TMP**
 - Fluid gain/ # Hours = UF vol (ml/hr)
 - UF Volume/ UF Coefficient = TMP
 - TMP = V resistance + Neg pressure

• **Set machine parameters**
 - BFR • DFR • UFR • Alarm limits
 - Dialysate temp • Heparin Infusion rate

• **Patient comfort measures**
Charting

• **Over-riding objectives**
 • Complete • Legible

• **Treatment documentation**
 • Prescribed parameters
 • Pre & Post patient assessment
 • Vital signs during treatment
 • Medications given
 • Treatment parameters
 – BFR, DFR, A & V pressures, TMP/UFR
 • Patient/machine complications
 • Your signature
Monitoring During Treatment

- Detection of Complications
 - Blood Related
 - Dialysate Related
 - Patient Related
- Extracorporeal Circuit Pressures
- Anticoagulation
- Treatment Factors
 - Impact on Clearance
- Charting
Blood Side Complications

- **Air in Blood Circuit**
 - Minor: usual cause is careless set-up, drip chamber level will drop, alarm will sound

- **Air Embolism**
 - Major: air detector alarm failure

- **Blood Loss**

- **Access Recirculation**

- **Clotting**

- **Poor BFR**

- **Needle Infiltration**
Dialysate Side Complications

- **Dialysate Temperature**
 - Hypothermia
 - Hyperthermia

- **Hemolysis**
 - Dialysate temperature, kinked blood lines, formaldehyde in dialysate lines, inadequate water treatment (chloramines, copper, zinc, nitrates)

- **Crenation**
 - Hypertonic dialysate
Patient Related Complications

- Hypotension
- Hypertension
- Muscle Cramps
- Headache
- Nausea & Vomiting
- Headache
- Fever &/or Chills
- Fistula/Graft Infection, Thrombosis
- Fistula Aneurysm, Psuedoaneurysm
- Central Venous Catheter Infection
- Catheter Thrombosis

- Cardiac Dysrhythmia
- Pericarditis, pericardial effusion, cardiac tamponade
- Dialysis Disequilibrium Syndrome
- First Use Syndrome
- Seizures
- Angina
- Anaphylaxis
- Pruritis
- Steal Syndrome
- Cardiac Arrest
- Dialysis Encephalopathy (Al++)
Extracorporeal Circuit Pressures

• Blood Side
 – Elevated Pre Pump Arterial Pressure
 • RBC damage if greater than -250 mmHg
 • Increase indicates obstruction of blood flow into pump
 – Elevated Post Pump Arterial Pressure
 • Increase indicates obstruction of blood flow into dialyzer
 – Elevated Venous Pressure
 • Increase indicates obstruction of blood flow into patient

• Dialysate Side
 – Failure of Negative Pressure pump

• Watch Both – Transmembrane Pressure is key
Anticoagulation

• Three methods
 • Saline flush
 – Flush blood circuit with saline q 30 min
 – No drugs
 – No bleeding risk during or post dialysis
 • Trisodium citrate
 – Difficult: requires 2 infusion pumps, 0 Ca++ dialysate
 – No bleeding risk during or post dialysis BUT maintaining patient’s calcium balance is difficult & risky
 – Citrate is metabolized into bicarbonate
 • Heparin
Two Heparin Methods

• **Systemic**
 - Method: bolus + constant infusion until last hour
 - Objective: maintain ACT 1.5-2.0 baseline

• **Tight Systemic**
 - Method: same but lower doses
 - Objective: maintain ACT 1.2-1.4 baseline
Treatment Factors: Impact on Clearance 1

- **Blood Flow Rate**
 - ↑ BFR → ↑ small molecule (ex. urea) clearance
 - BFR has much less effect on large molecules

- **Ultrafiltration Rate**
 - ↑ UFR will result in ↑ clearance, via “solute drag”
 - Mainly involves larger molecules
 - Minimal effect on total clearance

- **Dialysate flow rate**
 - ↑ DFR will ↑ clearance
 - Minimal effect on total clearance

 If BFR > 350, hi flux dialyzer, 500 DFR → 800 DFR = C_{urea} ↑ 5-10%
Treatment Factors: Impact on Clearance 2

- **Anticoagulation**
 - Clotting reduces available membrane surface area, thus clearance

- **Treatment Time**
 - Longer time = ↑ clearance
 - Shorter time = ↓ clearance

 \[5 \text{ min} \downarrow \text{ per Tx X 156 Tx/yr} = 780 \text{ min or } > 3 \text{ dialysis/yr}\]

- **Access Recirculation**
 - Causes: needles too close, access stenosis, cardiopulmonary recirculation
 - Result: freshly dialyzed blood mixes with uremic blood being drawn into the arterial blood line
Discontinuation

- Termination of Treatment
- Needle Removal/Catheter Care
- Post Dialysis Patient Assessment
- Documentation
- Post Dialysis Machine Care
Termination of Treatment

- **Discontinue Heparin infusion**
 - Per unit protocol (usually 30-60 min pre D/C)
- **Chart patient & machine parameters**
- **D/C TMP**
- **Draw post dialysis blood samples**
 - Reduce BFR to 100 ml/min, wait ≈ 15 seconds
 - Alternative: draw several minutes post dialysis
- **Return blood to patient**
- **Check patient’s BP before disconnection**
 - In case further fluid infusion is required
Needle Removal

- Remove one needle at a time
- Withdraw at same angle as insertion
- Apply pressure over vessel (*not skin*) insertion site
- Amount of pressure matters
 - Too little: prolonged bleeding, hematoma formation
 - Too much: clotted access
- Clean & dress site after bleeding stops

Note: If fistula clamps used, should follow strict protocol because application of proper pressure is difficult.
Catheter Care

• Prior to removing dialysis lines, disinfect catheter ports with:
 • Providone iodine or
 • Chlorhexadine gluconate
• Flush each catheter lumen with normal saline
• Instill heparin into each lumen
 • 5,000-10,000 units per lumen is most common dosage range
 • NOTE: volume of heparin should just barely exceed lumen volume
• Place fresh sterile dressing over catheter site
• Label catheter site
 • “DO NOT FLUSH”
 • # units heparin per lumen
 • Date and initials of staff member
Post Dialysis Patient Assessment

- Vital signs
 - BP sitting & standing
 - TPR
- Physical assessment
 - Heart & lung sounds
 - Edema
 - Weight (fluid loss)
- Vascular access
- Patient symptoms
 - Patient comments, complaints
- Overall condition observations
 - General condition, behavior, mental status
Documentation

• Dialysis data
 • Time stopped
 • Volume of rinseback saline
 • Blood loss, if any (include clots in dialyzer, drip chambers)

• Patient condition
 • Vital signs, physical assessment
 • Overall condition, including vascular access

• Special instructions to patient, if any

• Time & method of departure
Post Dialysis Machine Care

• Disconnect and rinse concentrate lines
• Remove dialyzer & bloodlines
 • Dispose in hazardous waste container
 • If to be reused
 – Ensure filled with saline or heparinized saline, per unit protocol
 – Ensure properly labeled with patient ID data
 – Deliver to reuse area within 10-15 min post dialysis

• Remove other disposables
 • Dispose in hazardous or non-hazardous waste container, as appropriate

• Remove & disinfect non-disposables (ex. clamps)
• Clean & disinfect outside of machine
Dialysis Procedures

Summary

- Initiation
- Monitoring
- Discontinuation

It is not simple!

YOU are the key.